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Preface

This preface introduces the Arm®™ Cortex®-A53 MPCore Processor Technical Reference Manual.
It contains the following sections:

. About this book on page vii.
. Feedback on page xi.
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Preface

About this book

This book is for the Cortex-A53 MPCore processor. This is a cluster device that has between
one and four cores.
Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for
example, r1p2, where:

rm Identifies the major revision of the product, for example, rl.
pn Identifies the minor revision or modification status of the product, for example,
p2.

Intended audience
This book is written for system designers, system integrators, and programmers who are
designing or programming a System-on-Chip (SoC) that uses the Cortex-A53 processor.
Using this book
This book is organized into the following chapters:

Chapter 1 Introduction
Read this for an introduction to the Cortex-A53 processor and descriptions of the
major features.

Chapter 2 Functional Description
Read this for a description of the functionality of the Cortex-A53 processor.

Chapter 3 Programmers Model

Read this for a description of the programmers model.

Chapter 4 System Control

Read this for a description of the system registers and programming information.

Chapter 5 Memory Management Unit
Read this for a description of the Memory Management Unit (MMU).

Chapter 6 Level 1 Memory System
Read this for a description of the Level I (L1) memory system.

Chapter 7 Level 2 Memory System
Read this for a description of the Level 2 (L2) memory system.

Chapter 8 Cache Protection

Read this for a description of the cache protection.

Chapter 9 Generic Interrupt Controller CPU Interface
Read this for a description of the Generic Interrupt Controller (GIC) CPU
Interface.

Chapter 10 Generic Timer

Read this for a description of the Generic Timer.

DDI 0500J Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. vii
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Glossary

Conventions

Preface

Chapter 11 Debug
Read this for a description of the debug registers and shows examples of how to
use them.

Chapter 12 Performance Monitor Unit
Read this for a description of the Performance Monitor Unit (PMU).

Chapter 13 Embedded Trace Macrocell
Read this for a description of the Embedded Trace Macrocell (ETM) for the
Cortex-AS53 processor.

Chapter 14 Cross Trigger

Read this for a description of the cross trigger interfaces.

Appendix A Signal Descriptions

Read this for a description of the signals in the Cortex-A53 processor.

Appendix B Cortex-A53 Processor AArch32 unpredictable Behaviors
Read this for a description of specific Cortex-AS53 processor UNPREDICTABLE
behaviors.

Appendix C Revisions

Read this for a description of the technical changes between released issues of this
book.

The Arm®™ Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm® Glossary does not contain terms that are industry standard unless the
Arm meaning differs from the generally accepted meaning.

See Arm® Glossary http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.

This book uses the conventions that are described in:

. TBypographical conventions.
. Timing diagrams on page ix.
. Signals on page ix.

Typographical conventions
The following table describes the typographical conventions:

Typographical conventions

Style Purpose
italic Introduces special terminology, denotes cross-references, and citations.
bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive
lists, where appropriate.
monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.
DDI 0500J Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. viii
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Preface

Typographical conventions (continued)

Style

Purpose

monospace

monospace italic

Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code.

<and>

SMALL CAPITALS

Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:
MRC p15, @ <Rd>, <CRn>, <CRm>, <Opcode_2>

Used in body text for a few terms that have specific technical meanings, that are defined in the Arm® Glossary.
For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Additional reading

Timing diagrams

The figure Key fo timing diagram conventions explains the components used in timing
diagrams. Variations, when they occur, have clear labels. You must not assume any timing
information that is not explicit in the diagrams.

Shaded bus and signal areas are UNDEFINED, so the bus or signal can assume any value within
the shaded area at that time. The actual level is unimportant and does not affect normal
operation.

Clock
HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

T

High impedance to stable bus
Key to timing diagram conventions

Signals
The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:

. HIGH for active-HIGH signals.
. LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

This section lists publications by Arm and by third parties.

See Infocenter http://infocenter.arm.com, for access to Arm documentation.

DDI 0500J
1D012219

Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. ix
Non-Confidential



Preface

Arm publications

This book contains information that is specific to this product. See the following documents for
other relevant information:

Arm® Architecture Reference Manual Armv7-A and Armv7-R edition (DDI 0406).

Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile
(DDI 0487).

Arm® Cortex®-A53 MPCore Processor Advanced SIMD and Floating-point Extension
Technical Reference Manual (DDI 0502).

Arm® Cortex®-A Series Programmer s Guide (DEN 0013).

Arm® AMBA® AXI and ACE Protocol Specification AXI3, AXI4, and AXI14-Lite, ACE and
ACE-Lite (IHI 0022).

Arm® AMBA®™ APB Protocol Specification (IHI 0024).

Arm® CoreSight™ Architecture Specification (IHI 0029).

Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIvS5.2 (IH1 0031).
Arm® AMBA®™ 4 ATB Protocol Specification (IHI 0032).

Arm® Generic Interrupt Controller Architecture Specification (IHI 0048).

Arm® ETM Architecture Specification, ETMv4 (IHI 0064).

Low Power Interface Specification: Arm® Q-Channel and P-Channel Interfaces (IHI
0068).

The following confidential books are only available to licensees:

Arm® Cortex®-A53 MPCore Processor Cryptography Extension Technical Reference
Manual (DDI 0501).

Arm® Cortex®-A53 MPCore Processor Configuration and Sign-off Guide (DII 0281).
Arm® Cortex®-A53 MPCore Processor Integration Manual (DIT 0036).
Arm® AMBA® 5 CHI Protocol Specification (IHI 0050).

Armv8 AArch32 UNPREDICTABLE behaviors.

Other publications

This section lists relevant documents published by third parties:

ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic.

Note

Armfloating-point terminology is largely based on the earlier ANSI/IEEE Std 754-1985
issue of the standard. See the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile for more information.
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Feedback

Preface

Arm welcomes feedback on this product and its documentation.

Feedback on this product

Feedback on content

If you have any comments or suggestions about this product, contact your supplier and give:

. The product name.
. The product revision or version.
. An explanation with as much information as you can provide. Include symptoms and

diagnostic procedures if appropriate.

If you have comments on content then send an e-mail to errata@arm.com. Give:
. The title.

. The number, DDI 0500J.

. The page numbers to which your comments apply.

. A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality
of the represented document when used with any other PDF reader.
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Chapter 1

Introduction

This chapter introduces the Cortex-AS53 processor and its features. It contains the following

sections:

About the Cortex-A53 processor on page 1-2.
Compliance on page 1-3.

Features on page 1-5.

Interfaces on page 1-6.

Implementation options on page 1-7.

Test features on page 1-9.

Product documentation and design flow on page 1-10.
Product revisions on page 1-12.

DDI 0500J
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Introduction

1.1 About the Cortex-A53 processor
The Cortex-A53 processor is a mid-range, low-power processor that implements the Armv8-A
architecture. The Cortex-A53 processor has one to four cores, each with an L1 memory system
and a single shared L2 cache.
Figure 1-1 shows an example of a Cortex-A53 MPCore configuration with four cores and either
an ACE or a CHI interface.
Cortex-A53 processor
<4—Timer events Timer -
Counter: - ACP* <4—AXI slave interface=——p>
=——I|CDT*, nIRQ, nFIQ=— Interrunt || -
<-ICCT*, n'VCPUMNTIRQHH P
< PMU Core — | | Mast ACE or CHI
aster P or I
o ATB Trace ] interface | master interface
< Debug Debug LI
Core 0 N
— Power P
Core 1* — management [ € Power contro|=——p-
4———APB debug Ly
Clocks: » < DFT. >
R » Test
Resets- > < MBIST >
Configuration: =
* Optional
Figure 1-1 Example Cortex-A53 processor configuration
See About the Cortex-A53 processor functions on page 2-2 for more information about the
functional components.
DDI 0500J Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. 1-2
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Introduction

1.2 Compliance
The Cortex-AS53 processor complies with, or implements, the specifications described in:
. Arm architecture.
. Interconnect architecture.
. Generic Interrupt Controller architecture on page 1-4.
. Generic Timer architecture on page 1-4.
. Debug architecture on page 1-4.
. Embedded Trace Macrocell architecture on page 1-4.
This TRM complements architecture reference manuals, architecture specifications, protocol
specifications, and relevant external standards. It does not duplicate information from these
sources.
1.21  Arm architecture
The Cortex-A53 processor implements the Armv8-A architecture. This includes:
. Support for both AArch32 and AArch64 Execution states.
. Support for all Exception levels, ELO, EL1, EL2, and EL3, in each execution state.
. The A32 instruction set, previously called the Arm instruction set.
. The T32 instruction set, previously called the Thumb instruction set.
. The A64 instruction set.
The Cortex-A53 processor supports the following architecture extensions:
. Optional Advanced SIMD and floating-point Extension for integer and floating-point
vector operations.
Note
—  The Advanced SIMD architecture, its associated implementations, and supporting
software, are commonly referred to as NEON technology.
—  Toperform floating-point operations, you must implement the Advanced SIMD and
floating-point Extension. There is no software API library for floating-point in the
Armv8-A architecture.
—  You cannot implement floating-point without Advanced SIMD.
. Optional Armv8 Cryptography Extensions.
Note
You cannot implement the Cryptography Extensions without Advanced SIMD and
floating-point.
See the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile for more
information.
1.2.2 Interconnect architecture
The Cortex-A53 bus interface natively supports one of:
. AMBA 4 ACE bus architecture. See the Arm® AMBA® AXI and ACE Protocol
Specification AXI3, AXI4, and AXI4-Lite, ACE and ACE-Lite.
. AMBA 5 CHI bus architecture. See the Arm® AMBA® 5 CHI Protocol Specification.
DDI 0500J Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. 1-3
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Introduction

1.2.3  Generic Interrupt Controller architecture

The Cortex-AS53 processor implements the Generic Interrupt Controller (GIC) v4 architecture.
The Cortex-A53 processor includes only the GIC CPU Interface. See the Arm® Generic
Interrupt Controller Architecture Specification.

1.2.4 Generic Timer architecture

The Cortex-A53 processor implements the Arm Generic Timer architecture. See the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile.

1.2.5 Debug architecture

The Cortex-A53 processor implements the Armv8 Debug architecture. The CoreSight Cross
Trigger Interface (CTI) enables the debug logic, the Embedded Trace Macrocell (ETM), and the
Performance Monitor Unit (PMU), to interact with each other and with other CoreSight
components. For more information, see the:

™

. Arm® CoreSight™ Architecture Specification.

. Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

1.2.6 Embedded Trace Macrocell architecture

The Cortex-A53 processor implements the ETMv4 architecture. See the Arm®™ ETM
Architecture Specification, ETMv4.

DDI 0500J Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. 1-4
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1.3

Features

Introduction

The Cortex-AS53 processor includes the following features:

Full implementation of the Armv8-A architecture instruction set with the architecture
options listed in Arm architecture on page 1-3.

In-order pipeline with symmetric dual-issue of most instructions.
Harvard Level I (L1) memory system with a Memory Management Unit (MMU).

Level 2 (L2) memory system providing cluster memory coherency, optionally including
an L2 cache.

DDI 0500J
1D012219
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Introduction

1.4 Interfaces
The Cortex-AS53 processor has the following external interfaces:
. Memory interface that implements either an ACE or CHI interface.
. Optional Accelerator Coherency Port (ACP) that implements an AXI slave interface.
. Debug interface that implements an APB slave interface.
. Trace interface that implements an ATB interface.
. CTL
. Design for Test (DFT).
. Memory Built-In Self-Test (MBIST).
. Q-channel, for power management.
See Interfaces on page 2-7 for more information on each of these interfaces.
DDI 0500J Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. 1-6
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Introduction

1.5 Implementation options
Table 1-1 lists the implementation options at build time for the Cortex-A53 processor.
Table 1-1 Cortex-A53 processor implementation options
Feature Range of options
Number of cores Up to four cores.
L1 Instruction cache size . 8K.
. 16K.
. 32K.
. 64K.
L1 Data cache size . 8K.
. 16K.
. 32K.
. 64K.
L2 cache Included or not.
L2 cache size . 128K.
. 256K.
. 512K.
. 1024K.
. 2048K.
L2 data RAM input latency . 1 cycle.
. 2 cycles.
L2 data RAM output latency . 2 cycles.
. 3 cycles.
SCU-L2 cache protection Included or not.
Advanced SIMD and floating-point Extension  Included or not.
Cryptography Extension Included or not.
CPU cache protection? Included or not.
AMBA 5 CHI or AMBA 4 ACE interface . AMBA 5 CHI.
. AMBA 4 ACE.
Accelerator Coherency Port (ACP)® Included or not.
v7 or v8 Debug memory map . v8 Debug memory map.
. v7 Debug memory map.
a. Not implemented if the L2 cache is implemented and SCU-L2 cache protection
is not implemented.
b. Not implemented if the Cortex-A53 processor does not include an L2 cache.
The L1 duplicate tags in the SCU are protected by the CPU cache protection.
There is no option to implement floating-point without Advanced SIMD.
There is no option to implement the Cryptography Extension without the Advanced
SIMD and floating-point Extension.
DDI 0500J Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. 1-7
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Introduction

. All cores share a common L2 cache.

1.5.1 Processor configuration

All cores in a cluster have identical configurations, that were determined during the build
configuration. These configurations cannot be changed by software:

. Either all of the cores have L1 cache protection, or none have.
. Either all of the cores have Advanced SIMD and floating-point Extensions, or none have.
. Either all of the cores have Cryptography Extensions, or none have.
. All cores must have the same size L1 caches as each other.
DDI 0500J Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. 1-8
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1.6 Test features

The Cortex-AS53 processor provides test signals that enable the use of both ATPG and MBIST
to test the processor and its memory arrays. See Appendix A Signal Descriptions for more
information.
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1.7 Product documentation and design flow

This section describes the Cortex-A53 processor books and how they relate to the design flow
in:

. Documentation.
. Design flow on page 1-11.
See Additional reading on page ix for more information about the books described in this

section. For information on the relevant architectural standards and protocols, see Compliance
on page 1-3.

1.71 Documentation
The Cortex-AS53 processor documentation is as follows:

Technical Reference Manual

The Technical Reference Manual (TRM) describes the functionality and the
effects of functional options on the behavior of the Cortex-A53 processor. It is
required at all stages of the design flow. The choices made in the design flow can
mean that some behavior described in the TRM is not relevant. If you are
programming the Cortex-A53 processor then contact:

. The implementer to determine:
—  The build configuration of the implementation.

—  What integration, if any, was performed before implementing the
Cortex-AS53 processor.

. The integrator to determine the pin configuration of the device that you are
using.

There are separate TRMs for:

. The optional Advanced SIMD and floating-point Extension.

. The optional Cryptography Extension.

Configuration and Sign-off Guide
The Configuration and Sign-off Guide (CSG) describes:

. The available build configuration options and related issues in selecting
them.

. How to configure the Register Transfer Level (RTL) source files with the
build configuration options.

. How to integrate RAM arrays.
. How to run test vectors.
. The processes to sign off the configured design.

The Arm product deliverables include reference scripts and information about
using them to implement your design. Reference methodology flows supplied by
Arm are example reference implementations. Contact your EDA vendor for EDA
tool support.

The CSG is a confidential book that is only available to licensees.

Integration Manual

The Integration Manual (IM) describes how to integrate the Cortex-A53
processor into a SoC. It includes a description of the pins that the integrator must
tie off to configure the processor. Some of the integration is affected by the
configuration options used when implementing the Cortex-A53 processor.
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1.7.2

Design flow

Introduction

The IM is a confidential book that is only available to licensees.

The Cortex-AS53 processor is delivered as synthesizable RTL. Before it can be used in a product,
it must go through the following process:

Implementation = The implementer configures and synthesizes the RTL to produce a hard
macrocell. This includes integrating RAMs into the design.

Integration The integrator connects the macrocell into a SoC. This includes
connecting it to a memory system and peripherals.

Programming This is the last process. The system programmer develops the software
required to configure and initialize the Cortex-A53 processor, and tests the
required application software.

Each process:
. Can be performed by a different party.

. Can include implementation and integration choices that affect the behavior and features
of the Cortex-AS53 processor.

The operation of the final device depends on:

Build configuration

The implementer chooses the options that affect how the RTL source files are
pre-processed. These options usually include or exclude logic that affects one or
more of the area, maximum frequency, and features of the resulting macrocell.

Configuration inputs

The integrator configures some features of the Cortex-A53 processor by tying
inputs to specific values. These configurations affect the start-up behavior before
any software configuration is made. They can also limit the options available to
the software.

Software configuration

The programmer configures the Cortex-AS53 processor by programming
particular values into registers. This affects the behavior of the processor.

Note

This manual refers to implementation-defined features that apply to build configuration options.
Reference to a feature that is included means that the appropriate build and pin configuration
options have been selected. Reference to an enabled feature means that the feature has also been
configured by software.
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1.8 Product revisions

This section describes the differences in functionality between product revisions.

rOp0 First release.
ropl1 There are no functional changes in this release.
rop2 There are no functional changes in this release.
rOp3 There are no functional changes in this release.
rOp4 ECC error injection support.
DDI 0500J Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. 1-12
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Chapter 2
Functional Description

This chapter describes the functionality of the Cortex-A53 processor. It contains the following
sections:

. About the Cortex-A53 processor functions on page 2-2.
. Interfaces on page 2-7.

. Clocking and resets on page 2-9.

. Power management on page 2-17.
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Functional Description

21 About the Cortex-A53 processor functions
Figure 2-1 shows a top-level functional diagram of the Cortex-A53 processor.
Cortex-A53 processor
APB decoder APB ROM APB multiplexer CT™M
Governor
Core 0 governor Core 1 governor Core 2 governor Core 3 governor
Retention| Debug over Retention| Debug over Retention| Debug over Retention| Debug over
CTI CTI CTI CTI
control | power down control | power down control | power down control | power down
Clock and| Arch | GIC CPU | |Clock and| Arch | GIC CPU | |Clock and| Arch | GIC CPU | |Clock and| Arch | GIC CPU
reset | timer | interface reset | timer | interface reset | timer | interface reset | timer | interface
Core 0 Core 1 Core 2 Core 3
FPU and NEON | Crypto FPU and NEON| Crypto FPU and NEON | Crypto FPU and NEON| Crypto
extension extension extension extension extension extension extension extension
L1 L1 Debug L1 L1 Debug L1 L1 Debug L1 L1 Debug
ICache [DCache | and trace | | ICache | DCache | and trace | | ICache |DCache | and trace | | ICache |DCache | and trace
Level 2 memory system
L2 cache scu ACE/AMBA 5 CHI ACP slave
master bus interface
Figure 2-1 Cortex-A53 processor block diagram
The following sections describe the main Cortex-A53 processor components and their
functions:
. Instruction Fetch Unit.
. Data Processing Unit on page 2-3.
. Advanced SIMD and floating-point Extension on page 2-3.
. Cryptography Extension on page 2-4.
. Translation Lookaside Buffer on page 2-4.
. Data side memory system on page 2-4.
. L2 memory system on page 2-5.
. Cache protection on page 2-6.
. Debug and trace on page 2-6.
2141 Instruction Fetch Unit
The Instruction Fetch Unit (IFU) contains the instruction cache controller and its associated
linefill buffer. The Cortex-A53 MPCore instruction cache is 2-way set associative and uses
Virtually Indexed Physically Tagged (VIPT) cache lines holding up to 16 A32 instructions, 16
32-bit T32 instructions, 16 A64 instructions, or up to 32 16-bit T32 instructions.
The IFU cannot hold A64, A32, and T32 instructions in the same cache line. For example, if the
IFU fetches both A32 and T32 instructions from the same 64 byte region of memory, that region
occupies two cache lines, one for the A32 instructions and one for the T32 instructions.
The instruction cache has the following features:
. Pseudo-random cache replacement policy.
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. Sequential instruction fetches.
. Instruction prefetches.
. Critical word first linefill on a cache miss.

The IFU obtains instructions from the instruction cache or from external memory and predicts
the outcome of branches in the instruction stream, then passes the instructions to the Data
Processing Unit (DPU) for processing.

If the cache protection configuration is chosen, the L1 Instruction cache data and tag RAMs are
protected by parity bits. The parity bits enable any single-bit error to be detected. If an error is
detected, the line is invalidated and fetched again.

Branch Target Instruction Cache

The IFU contains a single entry Branch Target Instruction Cache (BTIC). This
stores up to two instruction cache fetches and enables the branch shadow of
predicted taken branch instructions to be eliminated. The BTIC implementation
is architecturally transparent, so it does not have to be flushed on a context switch.

Branch Target Address Cache

The IFU contains a 256-entry Branch Target Address Cache (BTAC) to predict
the target address of indirect branches. The BTAC implementation is
architecturally transparent, so it does not have to be flushed on a context switch.

Branch predictor

The branch predictor is a global type that uses branch history registers and a
3072-entry pattern history prediction table.

Return stack

The IFU includes an 8-entry return stack to accelerate returns from procedure

calls. For each procedure call, the return address is pushed onto a hardware stack.
When a procedure return is recognized, the address that is held in the return stack
is popped, and the IFU uses it as the predicted return address. The return stack is
architecturally transparent, so it does not have to be flushed on a context switch.

See Chapter 6 Level 1 Memory System for more information.

21.2 Data Processing Unit
The Data Processing Unit (DPU) holds most of the program-visible state of the processor, such
as general-purpose registers and system registers. It provides configuration and control of the
memory system and its associated functionality. It decodes and executes instructions, operating
on data that is held in the registers in accordance with the ARMv8-A architecture. Instructions
are fed to the DPU from the IFU. The DPU executes instructions that require data to be
transferred to or from the memory system by interfacing to the Data Cache Unit (DCU), that
manages all load and store operations.
See Chapter 3 Programmers Model and Chapter 4 System Control for more information.
21.3 Advanced SIMD and floating-point Extension
The optional Advanced SIMD and floating-point Extension implements:
. ARM NEON technology, a media, and signal processing architecture that adds
instructions that are targeted at audio, video, 3-D graphics, image, and speech processing.
Advanced SIMD instructions are available in AArch64 and AArch32 states.
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. The floating-point architecture includes the floating-point register file and status registers.
It performs floating-point operations on the data that is held in the floating-point register
file.

See the ARM™ Cortex®-A53 MPCore Processor Advanced SIMD and floating-point Extension
Technical Reference Manual for more information.

214 Cryptography Extension

The optional Cortex-A53 MPCore Cryptography Extension supports the ARMvS Cryptography

Extensions. The Cryptography Extension adds new A64, A32, and T32 instructions to

Advanced SIMD that accelerate:

. Advanced Encryption Standard (AES) encryption and decryption.

. The Secure Hash Algorithm (SHA) functions SHA-1, SHA-224, and SHA-256.

. Finite field arithmetic used in algorithms such as Galois/Counter Mode and Elliptic Curve
Cryptography.

See the ARM™ Cortex®-A53 MPCore Processor Cryptography Extension Technical Reference

Manual for more information.

21.5 Translation Lookaside Buffer

The Translation Lookaside Buffer (TLB) contains the main TLB and handles all translation

table walk operations for the processor. TLB entries are stored inside a 512-entry, 4-way

set-associative RAM.

If the cache protection configuration is implemented, the TLB RAMs are protected by parity

bits. The parity bits enable any single-bit error to be detected. If an error is detected, the entry

is flushed and fetched again.

See Chapter 6 Level 1 Memory System for more information.

2.1.6 Data side memory system

This section describes the following:

. Data Cache Unit.

. Store Buffer on page 2-5.

. Bus Interface Unit and SCU interface on page 2-5.

Data Cache Unit

The Data Cache Unit (DCU) consists of the following sub-blocks:

. The Level 1 (L1) data cache controller, that generates the control signals for the associated
embedded tag, data, and dirty RAMs, and arbitrates between the different sources
requesting access to the memory resources. The data cache is 4-way set associative and
uses a Physically Indexed, Physically Tagged (PIPT) scheme for lookup that enables
unambiguous address management in the system.

. The load/store pipeline that interfaces with the DPU and main TLB.

. The system controller that performs cache and TLB maintenance operations directly on
the data cache and on the instruction cache through an interface with the IFU.

. An interface to receive coherency requests from the Snoop Control Unit (SCU).
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Functional Description

The data cache has the following features:
. Pseudo-random cache replacement policy.

. Streaming of sequential data because of multiple word load instructions, for example LDM,
LDRD, LDP and VLDM.

. Critical word first linefill on a cache miss.
See Chapter 6 Level I Memory System for more information.

If the CPU cache protection configuration is implemented, the L1 Data cache tag RAMs and
dirty RAMs are protected by parity bits. The L1 Data cache data RAMs are protected using
Error Correction Codes (ECC). The ECC scheme is Single Error Correct Double Error Detect
(SECDED).

The DCU includes a combined local and global exclusive monitor, which is used by the
Load-Exclusive/ Store-Exclusive instructions. See the ARM® Architecture Reference Manual
ARMVS, for ARMVS-A architecture profile for information about these instructions.

Store Buffer

The Store Buffer (STB) holds store operations when they have left the load/store pipeline and
have been committed by the DPU. The STB can request access to the cache RAMs in the DCU,
request the BIU to initiate linefills, or request the BIU to write out the data on the external write
channel. External data writes are through the SCU.

The STB can merge:

. Several store transactions into a single transaction if they are to the same 128-bit aligned
address.

. Multiple writes into an AXI or CHI write burst.

The STB is also used to queue maintenance operations before they are broadcast to other cores
in the cluster.

See Chapter 6 Level 1 Memory System for more information.

Bus Interface Unit and SCU interface

The Bus Interface Unit (BIU) contains the SCU interface and buffers to decouple the interface
from the cache and STB. The BIU interface and the SCU always operate at the processor
frequency.

See Chapter 6 Level I Memory System for more information.

L2 memory system

The Cortex-A53 L2 memory system contains the L2 cache pipeline and all logic required to
maintain memory coherence between the cores of the cluster. It has the following features:

. An SCU that connects the cores to the external memory system through the master
memory interface. The SCU maintains data cache coherency between the cores and
arbitrates L2 requests from the cores.

When the Cortex-AS53 processor is implemented with a single core, it still includes the
Snoop Control Unit (SCU). See Implementation options on page 1-7 for more
information.
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Functional Description

Note
The SCU does not support hardware management of coherency of the instruction caches.
Instruction cache linefills perform coherent reads, however, there is no coherency
management of data held in the instruction cache.

. An optional L2 cache that:
—  Has a cache RAM size of 128KB, 256KB, 512KB, 1MB, or 2MB.
— Is 16-way set associative.
—  Supports 64 byte cache lines.

. A 512-bit wide fetch path from the L2 cache.

. A single 128-bit wide master interface to external memory that:
—  Can be implemented using the AMBA 4 ACE or AMBA 5 CHI architectures.
—  Supports integer ratios of the processor clock period up to and including 1:1.
—  Supports a 40-bit physical address range.

. An optional 128-bit wide I/O coherent ACP interface that can allocate to the L2 cache.

See Chapter 7 Level 2 Memory System for more information.

Cache protection

The Cortex-A53 processor supports cache protection in the form of ECC or parity on all RAM
instances in the processor using two separate implementation options:

. SCU-L2 cache protection.
. CPU cache protection.

These options enable the Cortex-AS3 processor to detect and correct a one-bit error in any RAM
and detect two-bit errors in some RAMs.

Debug and trace

The Cortex-AS53 processor supports a range of debug and trace features including:
. ARM v8 debug features in each core.

. ETMv4 instruction trace unit for each core.

. CoreSight Cross Trigger Interface (CTI).

. CoreSight Cross Trigger Matrix (CTM).

. Debug ROM.

The Cortex-AS53 processor has an Advanced Peripheral Bus version 3 (APBv3) debug interface
that is CoreSight compliant. This permits system access to debug resources, for example, the
setting of watchpoints and breakpoints.

The Cortex-A53 processor provides performance monitors that can be configured to gather
statistics on the operation of each core and the memory system. The performance monitors
implement the ARM PMUvV3 architecture.

See Chapter 11 Debug, Chapter 12 Performance Monitor Unit, and Chapter 13 Embedded
Trace Macrocell for more information.
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2.2 Interfaces

The Cortex-AS53 processor has the following external interfaces:

. Master memory interface.

. Accelerator Coherency Port.

. External debug interface.

. Trace interface.

. CTI on page 2-8.

. DFT on page 2-8.

. MBIST on page 2-8.

. O-channel on page 2-8.

221 Master memory interface

The processor implements the AMBA 4 ACE or AMBA 5 CHI interface:

. ACE is an extension to the AXI protocol and provides the following enhancements:
—  Support for hardware cache coherency.
—  Barrier transactions that guarantee transaction ordering.
— Distributed virtual memory messaging, enabling management of a virtual memory

system across multiple MPCore clusters.

See the ARM™ AMBA®™ AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite,
ACE and ACE-Lite for more information.

. CHI is a protocol that provides an architecture for connecting multiple nodes using a
scalable interconnect. The nodes on the interconnect might be cores, clusters, I/O bridges,
memory controllers, or graphics processors.

See the ARM®™ AMBA® 5 CHI Protocol Specification.
2.2.2 Accelerator Coherency Port

The processor supports an Accelerator Coherency Port (ACP). This is an AMBA 4 AXI slave

interface. The ACP is provided to reduce software cache maintenance operations when sharing

memory regions with other masters, and to allow other masters to allocate data into the L2
cache.

The ACP slave interface allows an external master to make coherent requests to shared memory,

but it does not support cache maintenance, coherency, barrier, or DVM transactions.

See ACP on page 7-20 and the ARM®™ AMBA® AXI and ACE Protocol Specification AXI3, AXI4,

and AXI4-Lite, ACE and ACE-Lite for more information.

2.2.3 External debug interface
The processor supports an AMBA 3 APB slave interface that enables access to the debug
registers. See the ARM® CoreSight™ Architecture Specification for more information.
2.2.4 Trace interface

The processor supports dedicated AMBA 4 ATB interfaces for each core that outputs trace

information for debugging. The ATB interface is compatible with the CoreSight architecture.

See the ARM®™ AMBA® 4 ATB Protocol Specification for more information.
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2.2.6

2.2.7

2.2.8

CTI

DFT

MBIST

Q-channel

Functional Description

The Cortex-A53 processor implements a single cross trigger channel interface. This external
interface is connected to the CoreSight Cross Trigger Interface (CTI) corresponding to each
core through a simplified Cross Trigger Matrix (CTM). See Chapter 14 Cross Trigger for more
information.

The processor implements a Design For Test (DFT) interface that enables an industry standard
Automatic Test Pattern Generation (ATPG) tool to test logic outside of the embedded memories.
See DFT interface on page A-33 for information on these test signals.

The Memory Built In Self Test (MBIST) controller interface provides support for manufacturing
test of the memories embedded in the Cortex-A53 processor. See MBIST interface on page A-33
for information on this interface.

The Q-channel interfaces enable communication to an external power controller. See
Communication to the Power Management Controller on page 2-27.
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2.31

Functional Description

Clocking and resets

Clocks

PCLKENDBG / i‘ / \ /

The following sections describe clocking and resets:
. Clocks.

. Input synchronization on page 2-13.

. Resets on page 2-14.

The Cortex-AS53 processor has a single clock input, CLKIN. All cores in the Cortex-A53
processor and the SCU are clocked with a distributed version of CLKIN.

The Cortex-A53 processor has the following clock enable signals:
. PCLKENDBG.

. ACLKENM on page 2-10.

. ACLKENS on page 2-10.

. SCLKEN on page 2-11.

. ATCLKEN on page 2-12.

. CNTCLKEN on page 2-12.

PCLKENDBG

The processor includes an APB interface to access the debug and performance monitoring
registers. Internally this interface is driven from CLKIN. A separate enable signal,
PCLKENDBG, is provided to enable the external APB bus to be driven at a lower frequency,
that must be an integer ratio of CLKIN. If the debug infrastructure in the system is required to
be fully asynchronous to the processor clock, you can use a synchronizing component to
connect the external AMBA APB to the processor.

Figure 2-2 shows a timing example of PCLKENDBG that changes the CLKIN to PCLK
frequency ratio from 3:1 to 1:1.

1 CLKIN 1 CLKIN
cycle cycle

v

< »
< »

S ) A O

A

PCLKENDBG asserts one CLKIN

cycle before the rising edge of
PCLK
PCLK

< > «—>
CLKIN:PCLK = 3:1 CLKIN:PCLK = 1:1

Figure 2-2 PCLKENDBG with CLKIN:PCLK ratio changing from 3:1 to 1:1

Note

Figure 2-2 shows the timing relationship between the debug APB clock, PCLK and
PCLKENDBG, where PCLKENDBG asserts one clock cycle before the rising edge of PCLK.
It is important that the relationship between PCLK and PCLKENDBG is maintained.
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Functional Description

ACLKENM

This signal is present only if the master interface is configured to use the ACE protocol. The
master interface supports integer ratios of the CLKIN frequency, for example 1:1, 2:1, 3:1.
These ratios are configured through external clock enable signals. In all cases AXI transfers
remain synchronous. The ACE master interface includes the ACLKENM clock enable signal.

ACLKENM asserts one CLKIN cycle before the rising edge of the external ACE clock signal,
ACLKM. If you change the CLKIN to ACLKM frequency ratio, you must change
ACLKENM correspondingly.

Figure 2-3 shows a timing example of ACLKENM that changes the CLKIN to ACLKM
frequency ratio from 3:1 to 1:1.

1 CLKIN 1 CLKIN
cycle cycle

< »
< »

T ) A A

A
A\ 4

ACLKENM asserts one CLKIN

cycle before the rising edge of
ACLKM
ACLKM

< > +—>
CLKIN:ACLKM = 3:1 CLKIN:ACLKM = 1:1

Figure 2-3 ACLKENM with CLKIN:ACLKM ratio changing from 3:1 to 1:1

Note

. Figure 2-3 shows the timing relationship between the AXI master clock, ACLKM and
ACLKENM, where ACLKENM asserts one clock cycle before the rising edge of
ACLKM. It is important that the relationship between ACLKM and ACLKENM is
maintained.

. If there are any physical effects that could occur while changing the clock frequency,
ARM recommends that the clock ratio is changed only while the STANDBY WFIL2
output of the processor is asserted.

. The input signal ACLKENM exists in the Cortex-A53 processor if it is configured to
include the ACE interface.

ACLKENS

This signal is present only if the processor is configured with the ACP slave interface. The slave
interface supports integer ratios of the CLKIN frequency, for example 1:1, 2:1, 3:1. These
ratios are configured through external clock enable signals. In all cases AXI transfers remain
synchronous. The ACP slave interface includes the ACLKENS clock enable signal.

ACLKENS asserts one CLKIN cycle before the rising edge of the external ACP clock signal,
ACLKS. If you change the CLKIN to ACLKS frequency ratio, you must change ACLKENS
correspondingly.

Figure 2-4 on page 2-11 shows a timing example of ACLKENS that changes the CLKIN to
ACLKS frequency ratio from 3:1 to 1:1.
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1 CLKIN 1 CLKIN
cycle cycle

v

< »
< »

A

ACLKENS asserts one CLKIN

cycle before the rising edge of
ACLKS
ACLKS

< > +—>
CLKIN:ACLKS = 3:1 CLKIN:ACLKS = 1:1

Figure 2-4 ACLKENS with CLKIN:ACLKS ratio changing from 3:1 to 1:1

Note
. Figure 2-4 shows the timing relationship between the AXI slave clock, ACLKS and
ACLKENS, where ACLKENS asserts one clock cycle before the rising edge of
ACLKS. It is important that the relationship between ACLKS and ACLKENS is
maintained.

. If there are any physical effects that could occur while changing the clock frequency,
ARM recommends that the clock ratio is changed only while the STANDBY WFIL2
output of the processor is asserted.

. The input signal ACLKENS exists in the Cortex-A53 processor if it is configured to
include the ACP interface.

SCLKEN

This signal is present only if the master interface is configured to use the CHI protocol. The SCU
interface supports integer ratios of the CLKIN frequency, for example 1:1, 2:1, 3:1. These
ratios are configured through external clock enable signals. In all cases CHI transfers remain
synchronous. The CHI master interface includes the SCLKEN clock enable signal.

Figure 2-5 shows a timing example of SCLKEN that changes the CLKIN to SCLK frequency
ratio from 3:1 to 1:1.

1 CLKIN 1 CLKIN
cycle cycle

A
A\ 4

< »

T O A O
SCLKEN 4/7\_ [T\ /

SCLKEN asserts one CLKIN cycle

before the rising edge of SCLK
SCLK

< > +—>
CLKIN:SCLK = 3:1 CLKIN:SCLK = 1:1

Figure 2-5 SCLKEN with CLKIN:SCLK ratio changing from 3:1 to 1:1

Note

. Figure 2-5 shows the timing relationship between the CHI clock, SCLK and SCLKEN,
where SCLKEN asserts one CLKIN cycle before the rising edge of SCLK. It is
important that the relationship between SCLK and SCLKEN is maintained.
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. If there are any physical effects that could occur while changing the clock frequency,
ARM recommends that the clock ratio is changed only while the STANDBY WFIL2
output of the processor is asserted.

. The input signal SCLKEN exists in the Cortex-A53 processor if it is configured to
include the CHI interface.

ATCLKEN

The ATB interface is a synchronous interface that can operate at any integer multiple that is
equal to or slower than the main processor clock, CLKIN, using the ATCLKEN signal. For
example, the CLKIN to ATCLK frequency ratio can be 1:1, 2:1, or 3:1, where ATCLK is the
ATB bus clock. ATCLKEN asserts one CLKIN cycle before the rising edge of ATCLK. If you
change the CLKIN to ATCLK frequency ratio, you must change ATCLKEN correspondingly.

Figure 2-6 shows a timing example of ATCLKEN that changes the CLKIN to ATCLK
frequency ratio from 3:1 to 1:1.

1 CLKIN 1 CLKIN
cycle cycle

<

cenw L L L L L L L L
ATGLKEN 4/7\_ — /

»

A
A

ATCLKEN asserts one CLKIN

cycle before the rising edge of
ATCLK
ATCLK

< > +—>
CLKIN:ATCLK = 3:1 CLKIN:ATCLK = 1:1

Figure 2-6 ATCLKEN with CLKIN:ATCLK ratio changing from 3:1 to 1:1

Note
Figure 2-6 shows the timing relationship between the ATB clock, ATCLK and
ATCLKENDBG, where ATCLKENDBG asserts one clock cycle before the rising edge of
ATCLK. It is important that the relationship between ATCLK and ATCLKENDBG is
maintained.

CNTCLKEN

The CNTVALUEB is a synchronous 64-bit binary encoded counter value that can operate at
any integer multiple that is equal to or slower than the main processor clock, CLKIN, using the
CNTCLKEN signal. For example, you can set the CLKIN to CNTCLK frequency ratio to 1:1,
2:1, or 3:1, where CNTCLK is the system counter clock. CNTCLKEN asserts one CLKIN
cycle prior to the rising edge of CNTCLK.

Figure 2-7 on page 2-13 shows a timing example of CNTCLKEN that changes the CLKIN to
CNTCLK frequency ratio from 3:1 to 1:1.
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Functional Description

1 CLKIN
cycle
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CNTCLKEN asserts one CLKIN

cycle before the rising edge of
CNTCLK
CNTCLK

< »
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CLKIN:CNTCLK = 3:1

+—>
CLKIN:CNTCLK = 1:1

Figure 2-7 CNTCLKEN with CLKIN:CNTCLK ratio changing from 3:1 to 1:1

Note

Figure 2-7 shows the timing relationship between the system counter clock, CLKIN and
CNTCLKEN, where CNTCLKEN asserts one clock cycle before the rising edge of

CNTCLK. It is important that the relationship between CNTCLK and CNTCLKEN is
maintained.

Input synchronization

The Cortex-A53 processor synchronizes the input signals:

nCORERESET.
nCPUPORESET.
nFIQ.

nIRQ.
nL2RESET.
nMBISTRESET.
nPRESETDBG.
nREL

nSEL

nVFIQ.

nVIRQ.

nVSEIL
CLREXMONREQ.
CPUQREQn.
CTICHIN.
CTICHOUTACK.
CTIIRQACK.
DBGEN.
EDBGRQ.
EVENTIL
L2FLUSHREQ.
L2QREQn.
NEONQREQn.
NIDEN.

SPIDEN.
SPNIDEN.
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Resets

Functional Description

The SoC can present these inputs asynchronously. All other external signals must be
synchronous with reference to CLKIN.

Note

The synchronized CTICHIN input signals are used only if the CISBYPASS input signal is
deasserted LOW. If the CISBYPASS signal is asserted HIGH the CTICHIN synchronizers are
not used, and the SoC must present the CTICHIN synchronously to CLKIN.

The Cortex-A53 processor has the following active-LOW reset input signals:

nCPUPORESET[CN:0]
Where CN is the number of cores minus one.

These primary, Cold reset signals initialize all resettable registers in the
corresponding core, including debug registers and ETM registers.

nCORERESET|[CN:0]

These primary reset signals initialize all resettable registers in the
corresponding core, not including debug registers and ETM registers.

nPRESETDBG This single, cluster-wide signal resets the integrated CoreSight
components that connect to the external PCLK domain, such as debug
logic.

nL2RESET This single, cluster-wide signal resets all resettable registers in the L2
memory system and the logic in the SCU.

nMBISTRESET  An external MBIST controller can use this signal to reset the entire SoC.
The nMBISTRESET signal resets all resettable registers in the cluster,
for entry into, and exit from, MBIST mode.

All of these resets can be asynchronously:
. Asserted, HIGH to LOW.
. Deasserted, LOW to HIGH.

Reset synchronization logic inside the Cortex-AS53 processor ensures that reset deassertion is
synchronous for all resettable registers. The processor clock is not required for reset assertion,
but the processor clock must be present for reset deassertion to ensure reset synchronization.

In general, you only have to hold reset signals active for three processor clock cycles for the

reset to take effect. However, you must hold the reset signal LOW until the power returns and

the unit or processor is ready for the reset to take effect if:

. The Advanced SIMD and floating-point unit of a core undergoing a reset is in retention
state.

. A core that is being reset is in retention state.

This is the responsibility of the system implementer, because the time taken for retention exit
and the behavior of the power controller varies by partner and by implementation.
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Table 2-1 describes the valid reset signal combinations. All other combinations of reset signals
are illegal. In the table, n designates the core that is reset.

Table 2-1 Valid reset combinations

Reset combination

Signals

Value

Description

Cluster Cold reset

Cluster Cold reset with debug active

Individual core Cold reset with
debug active

Individual core Warm reset with
trace and debug active

Debug logic reset

MBIST reset

nCPUPORESET[CN:0]
nCORERESET[CN:0]
nPRESETDBG
nL2RESET
nMBISTRESET

nCPUPORESET[CN:0]
nCORERESET[CN:0]
nPRESETDBG
nL2RESET
nMBISTRESET

nCPUPORESET[CN:0]
nCORERESET[CN:0]
nPRESETDBG
nL2RESET
nMBISTRESET

nCPUPORESET|[CN:0]
nCORERESET[CN:0]
nPRESETDBG
nL2RESET
nMBISTRESET

nCPUPORESET[CN:0]
nCORERESET[CN:0]
nPRESETDBG
nL2RESET
nMBISTRESET

nCPUPORESET[CN:0]
nCORERESET[CN:0]
nPRESETDBG
nL2RESET
nMBISTRESET

all = 02
all = Xa

all =02
all = Xa

—_ =
= =]
=2
([l
O

all=
all=1

all=1
all=1

All logic is held in reset.

All cores are held in reset so they can be powered up.
The L2 is held in reset, but must remain powered up.
This enables external debug over power down for the
cluster.

Individual core is held in reset, so that the core can be
powered up. This enables external debug over power
down for the core that is held in reset.

Individual core is held in reset.

Cluster debug logic is held in reset.

All logic is held in reset.

Normal state

nCPUPORESET[CN:0]
nCORERESET[CN:0]
nPRESETDBG
nL2RESET
nMBISTRESET

all=1
all=1
1
1
1

No logic is held in reset.

a. For Cold reset, nCPUPORESET must be asserted. nCORERESET can be asserted, but is not required.

Warm reset

The Warm reset initializes all logic in the individual core apart from the Debug and ETM logic
in the CLK domain. All breakpoints and watchpoints are retained during a Warm reset
sequence.
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nL2RESET

NPRESETDBG
3 CLK cycles minimum——»
nCORERESETIN:0] N cycles minimun T

Functional Description

The following figure shows the Warm reset sequence for the Cortex-A53 processor.
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)7
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Figure 2-8 Warm reset timing

Individual core Warm reset initializes all logic in a single core apart from its Debug, ETM,
breakpoint, and watchpoint logic. Breakpoints and watchpoints for that core are retained. You
must apply the correct sequence before applying Warm reset to that core.

For individual processor Warm reset:

. You must apply steps 1 to 6 in the core powerdown sequence, see Individual core
shutdown mode on page 2-22, and wait until STANDBYWFTI is asserted, indicating that
the core is idle, before asserting nCORERESET for that core.

. nCORERESET for that core must assert for at least 3 CLK cycles.
. nL2RESET must not assert while any individual core is active.

. nPRESETDBG must not assert while any individual core is actively being debugged in
normal operating mode.

Note
If core dynamic retention using the CPU Q-channel interface is used, the core must be in
quiescent state with STANDBY WFI asserted and CPUQREQn, CPUQACCEPTnN, and
CPUQACCEPT must be LOW before nCORERESET is applied.

WARMRSTREQ and DBGRSTREQ

The ARMvS8-A architecture provides a mechanism to configure whether a processor uses
AArch32 or AArch64 at EL3 as a result of a Warm reset. When the Reset Request bit in the
RMR or RMR_ELS3 register is set to 1, the processor asserts the WARMRSTREQ signal and
the SoC reset controller can use this request to trigger a Warm reset of the core and change the
register width state. The AA64 bit in the RMR or RMR EL3 register selects the register width
at the next Warm reset, at the highest Exception level, EL3.

See the ARM® Architecture Reference Manual ARMVS, for ARMvS-A architecture profile for
information about the recommended code sequence to use, to request a Warm reset.

You must apply steps 1 to 6 in the core powerdown sequence, see Individual core shutdown
mode on page 2-22, and wait until STANDBY WFT asserts indicating the processor is idle,
before asserting nCORERESET for that core. nCORERESET must satisfy the timing
requirements described in the Warm reset section.

DDI 0500J
1D012219

Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. 2-16
Non-Confidential



Functional Description

24 Power management

The Cortex-AS53 processor provides mechanisms and support to control both dynamic and static
power dissipation. The individual cores in the Cortex-AS53 processor support four main levels
of power management. This section describes:

2.4.1 Power domains

Power domains.

Power modes on page 2-18.

Event communication using WFE or SEV on page 2-27.
Communication to the Power Management Controller on page 2-27.

Table 2-2 shows the power domains that the Cortex-A53 processor supports:

Table 2-2 Power domain description

Power domain

Description

PDCORTEXAS3 This includes the SCU, the optional L2 cache controller, and debug registers described as being in the
debug domain.
PDL2 This includes the L2 data RAM, L2 tag RAM, L2 victim RAM, and the SCU duplicate tag RAM.
PDCPU<n2> This includes the optional Advanced SIMD and floating-point Extension, the L1 TLB, L1 processor
RAMs, and debug registers described as being in the processor domain.
PDCPUADVSIMD<n2>  This represents the Advanced SIMD and floating-point block of core n.
a. <n>wherenis 0, 1,2, or 3. This represents core 0, core 1, core 2, or core 3. If a core is not present, the corresponding Power Domain is not
present.
The separate PDCORTEXAS3 and PDL2 power domains can remain active even when all the
cores are powered down. This means the Cortex-AS53 processor can continue to accept snoops
from external devices to access the L2 cache.
Figure 2-9 on page 2-18 shows an example of the domains embedded in a System-on-Chip
(SoC) power domain.
DDI 0500J Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. 2-17
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System
PDSOC
Cortex-A53 processor
PDCORTEXA53
Core <n> L2
PDCPU<n>
Instruction Data

cache cache TLB RAM

RAM RAM

A A A

\ 4 v v
Core <n>
excluding RAM P . Master
> = " Interface
Advanced SIMD
: . = < » ATB
and Floating-point| [« L2 excluding RAM
Debug
domain | (< » APB

PDADVSIMD<n> registers

*If implementation includes Dormant mode support

Figure 2-9 Power domains

2.4.2 Power modes

The power domains can be controlled independently to give different combinations of
powered-up and powered-down domains. However, only some powered-up and powered-down
domain combinations are valid and supported.

Table 2-4 on page 2-19 and Table 2-5 on page 2-19 show the supported power domain states for
the Cortex-A53 processor. The terms that are used are defined in Table 2-3.

Table 2-3 Power state description

Power state  Description

Off Block is power gated
Ret Logic or RAM retention power only
On Block is active

Caution
States that are not shown in Table 2-4 on page 2-19 and Table 2-5 on page 2-19 are unsupported
and must not occur.
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Table 2-4 Supported processor power states

Power domains

Description
PDCORTEXAS3 PDCPU<n>
Off Off Processor off.
Off Off L2 Cache Dormant Mode.
On See Table 2-5 Processor On, L2 RAMs Retained.
All cores either off or in WFx.
Note
L2 RAM Retention Entry or Residency Condition.
On See Table 2-5 Processor On, L2 RAMs Retained.
At least one core running.
Note
Transient Condition.
On See Table 2-5 Processor On, SCU/L2 RAMs Active.

Table 2-5 describes the supported power domain states for individual cores. The power domain
state in each core is independent of all other cores.

Table 2-5 Supported core power states

Power domains

Description
PDCPU PDADVSIMD
Off Off
On On Core on. Advanced SIMD and floating-point on.
On Ret AdvSIMD retention. Advanced SIMD and floating-point in retention.
Ret Ret Core retention. Core logic and Advanced SIMD and floating-point in retention.

You must follow the dynamic power management and powerup and powerdown sequences
described in the following sections. Any deviation from these sequences can lead to

UNPREDICTABLE results.

The supported power modes are:

Normal state on page 2-20.

Standby state on page 2-20.

Individual core shutdown mode on page 2-22.

Cluster shutdown mode without system driven L2 flush on page 2-24.

Cluster shutdown mode with system driven L2 flush on page 2-24.

Dormant mode on page 2-25.

Retention state on page 2-26.

DDI 0500J
1D012219

Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. 2-19

Non-Confidential



Functional Description

Normal state

This is the normal mode of operation where all of the processor functionality is available. The
Cortex-AS53 processor uses gated clocks and gates to disable inputs to unused functional blocks.
Only the logic in use to perform an operation consumes any dynamic power.

Standby state

The following sections describe the methods of entering standby state:
. Core Wait for Interrupt.

. Core Wait for Event on page 2-21.

. L2 Wait for Interrupt on page 2-21.

Core Wait for Interrupt

Wait for Interrupt is a feature of the ARMv8-A architecture that puts the core in a low-power
state by disabling most of the clocks in the core while keeping the core powered up. Apart from
a small dynamic power overhead on the logic to enable the core to wake up from WFI
low-power state, this reduces the power drawn to static leakage current only.

Software indicates that the core can enter the WFI low-power state by executing the WFI
instruction.

When the core is executing the WFI instruction, the core waits for all instructions in the core to
retire before entering the idle or low-power state. The WFI instruction ensures that all explicit
memory accesses, that occurred before the WFI instruction in program order, have retired. For
example, the WFI instruction ensures that the following instructions received the required data or
responses from the L2 memory system:

. Load instructions.
. Cache and TLB maintenance operations.
. Store exclusive instructions.

In addition, the WFI instruction ensures that store instructions have updated the cache or have
been issued to the SCU.

While the core is in WFI low-power state, the clocks in the core are temporarily enabled without
causing the core to exit WFI low-power state, when any of the following events are detected:

. A snoop request that must be serviced by the core L1 Data cache.

. A cache or TLB maintenance operation that must be serviced by the core L1 Instruction
cache, data cache, or TLB.

. An APB access to the debug or trace registers residing in the core power domain.

Exit from WFI low-power state occurs when the core detects a reset or one of the WFI wake up
events as described in the ARM® Architecture Reference Manual ARMVS, for ARMvS-A
architecture profile.

On entry into WFI low-power state, STANDBY WFTI for that core is asserted. Assertion of
STANDBYWFI guarantees that the core is in idle and low-power state. STANDBYWFI
continues to assert even if the clocks in the core are temporarily enabled because of an L2 snoop
request, cache, or TLB maintenance operation or an APB access.

Note

STANDBY WFTI does not indicate completion of L2 memory system transactions initiated by
the processor. All Cortex-A53 processor implementations contain an L2 memory system. This
includes implementations without an L2 cache.
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Core Wait for Event

Wait for Event (WFE) is a feature of the ARMvVS-A architecture that can be used by a locking
mechanism based on events to put the core in a low-power state by disabling most of the clocks
in the core while keeping the core powered up. Apart from a small dynamic power overhead on
the logic to enable the core to wake up from WFE low-power state, this reduces the power drawn
to static leakage current only.

A core enters into WFE low-power state by executing the WFE instruction. When executing the
WFE instruction, the core waits for all instructions in the core to complete before entering the idle
or low-power state.

If the event register is set, execution of WFE does not cause entry into standby state, but clears
the event register.

While the core is in WFE low-power state, the clocks in the core are temporarily enabled
without causing the core to exit WFE low-power state, when any of the following events are
detected:

. An L2 snoop request that must be serviced by the core L1 Data cache.

. A cache or TLB maintenance operation that must be serviced by the core L1 Instruction
cache, data cache, or TLB.

. An APB access to the debug or trace registers residing in the core power domain.

Exit from WFE low-power state occurs when the core detects a reset, the assertion of the
EVENTI input signal, or one of the WFE wake up events as described in the ARM® Architecture
Reference Manual ARMVS, for ARMvS-A architecture profile.

On entry into WFE low-power state, STANDBY WFE for that core is asserted. Assertion of
STANDBYWFE guarantees that the core is in idle and low-power state. STANDBYWFE
continues to assert even if the clocks in the core are temporarily enabled because of an L2 snoop
request, cache, and TLB maintenance operation or an APB access.

CLREXMON request and acknowledge signaling

When the CLREXMONREQ input is asserted, it signals the clearing of an external global
exclusive monitor and acts as WFE wake-up event to all the cores in the cluster.

The CLREXMONREQ signal has a corresponding CLREXMONACK response signal. This
forms a standard 2-wire, 4-phase handshake that can be used to signal across the voltage and
frequency boundary between the core and system.

Figure 2-10 shows the CLREXMON request and acknowledge handshake. When the request
signal is asserted, it continues to assert until an acknowledge is received. When the request is
deasserted, the acknowledge can then deassert.

CLREXMONREQ
CLREXMONACK

Figure 2-10 CLREXMON request and acknowledge handshake

L2 Wait for Interrupt

When all the cores are in WFI low-power state, the shared L2 memory system logic that is
common to all the cores can also enter a WFI low-power state.
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Functional Description

Entry into L2 WFI low-power state can occur only if specific requirements are met and the
following sequence applied:

. All cores are in WFI low-power state and therefore, the STANDBY WFI output for each
core is asserted. Assertion of all the cores STANDBY WFI outputs guarantee that all the
cores are in idle and low-power state. All clocks in the cores, with the exception of a small
amount of clock wake-up logic, are disabled.

. If configured with ACE, the SoC asserts the input pin ACINACTM to idle the AXI
master interface. This indicates that no snoop requests will be made from the external
memory system.

. If configured with a CHI interface, the SoC asserts the input pin SINACT to idle the CHI
master interface. This indicates that no snoop requests will be made from the external
memory system.

. If configured with an ACP interface, the SoC asserts the AINACTS input pin to idle the
ACP interface. This indicates that the SoC sends no more transaction on the ACP
interface.

When the L2 memory system completes the outstanding transactions for AXI or CHI interfaces,
it can then enter the low-power state, L2 WFI low-power state. On entry into L2 WFI low-power
state, STANDBYWFIL2 is asserted. Assertion of STANDBYWFIL2 guarantees that the L2
memory system is idle and does not accept new transactions.

Exit from L2 WFI low-power state occurs on one of the following events:
. A physical IRQ or FIQ interrupt.

. A debug event.

. Powerup or Warm reset.

When a core exits from WFI low-power state, STANDBY WFI for that core is deasserted. When
the L2 memory system logic exits from WFI low-power state, STANDBYWFIL2 is deasserted.
The SoC must continue to assert ACINACTM or SINACT until STANDBYWFIL2 has
deasserted.

Figure 2-11 shows the L2 WFI timing for a 4-core configuration.
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Figure 2-11 L2 Wait For Interrupt timing

Individual core shutdown mode
In this mode, the PDCPU power domain for an individual core is shut down and all state is lost.

For full shutdown of the Cortex-A53 processor, including implementations with a single core,
see Cluster shutdown mode without system driven L2 flush on page 2-24 and Cluster shutdown
mode with system driven L2 flush on page 2-24.
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To enable a core to be powered down, the implementation must place the core on a separately
controlled power supply. In addition, you must clamp the outputs of the core to benign values
while the entire cluster is powered down, to indicate that the core is idle.

To power down the core, apply the following sequence:

1.

9.

10.

Disable the data cache, by clearing the SCTLR.C bit, or the HSCTLR.C bit if in Hyp
mode. This prevents more data cache allocations and causes cacheable memory attributes
to change to Normal Non-cacheable. Subsequent loads and stores do not access the L1 or
L2 caches.

Clean and invalidate all data from the L1 Data cache. The L2 duplicate snoop tag RAM
for this core is now empty. This prevents any new data cache snoops or data cache
maintenance operations from other cores in the cluster being issued to this core.

Disable data coherency with other cores in the cluster, by clearing the
CPUECTLR.SMPEN bit. Clearing the SMPEN bit enables the core to be taken out of
coherency by preventing the core from receiving cache or TLB maintenance operations
broadcast by other cores in the cluster.

Execute an ISB instruction to ensure that all of the register changes from the previous steps
have been committed.

Execute a DSB SY instruction to ensure that all cache, TLB and branch predictor
maintenance operations issued by any core in the cluster device before the SMPEN bit
was cleared have completed.

Execute a WFI instruction and wait until the STANDBY WFI output is asserted to indicate
that the core is in idle and low-power state.

Deassert DBGPWRDUP LOW. This prevents any external debug access to the core.
Activate the core output clamps.
Assert nCPUPORESET LOW

Remove power from the PDCPU power domain.

To power up the core, apply the following sequence:

1.

Assert nCPUPORESET LOW. Ensure DBGPWRDUP is held LOW to prevent any
external debug access to the core.

Apply power to the PDCPU power domain. Keep the state of the signals
nCPUPORESET and DBGPWRDUP LOW.

Release the core output clamps.

Deassert resets.

Set the SMPEN bit to 1 to enable snooping into the core.

Assert DBGPWRDUP HIGH to allow external debug access to the core.

If required use software to restore the state of the core as it was prior to powerdown.
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Cluster shutdown mode without system driven L2 flush

This is the mode where the PDCORTEXAS3, PDL2, and PDCPU power domains are shut down
and all state is lost. In this section, a lead core is defined as the last core to switch off, or the first
core to switch on. To power down the cluster, apply the following sequence:

1. Ensure all non-lead cores are in shutdown mode, see Individual core shutdown mode on
page 2-22.

2. Follow steps 1 to 2 in Individual core shutdown mode on page 2-22.

3. Ifthe ACP interface is configured, ensure that any master connected to the interface does
not send new transactions, then assert AINACTS.

4.  Clean and invalidate all data from the L2 Data cache.
5. Follow steps 3 to 10 in Individual core shutdown mode on page 2-22.

6. In an ACE configuration, assert ACINACTM or, in a CHI configuration, assert
SINACT. Then wait until the STANDBYWFIL2 output is asserted to indicate that the
L2 memory system is idle. All Cortex-A53 processor implementations contain an L2
memory system, including implementations without an L2 cache.

7. Activate the cluster output clamps.

8. Remove power from the PDCORTEXAS53 and PDL2 power domains.

Note

For device powerdown, all operations on the lead core must occur after the equivalent step on
all non-lead cores.

To power up the cluster, apply the following sequence:
1. For each core in the cluster, assert nCPUPORESET LOW.
2. Assert nL2RESET LOW and hold LZRSTDISABLE LOW.

3. Apply power to the PDCORTEXAS53 and PDL2 domains while keeping the signals
described in steps 1. and 2. LOW.

4.  Release the cluster output clamps.

5. Continue a normal Cold reset sequence.

Cluster shutdown mode with system driven L2 flush

This is the mode where the PDCORTEXAS53, PDL2, and PDCPU power domains are shut down
and all state is lost. To power down the cluster, apply the following sequence:

1.  Ensure all cores are in shutdown mode, see Individual core shutdown mode on page 2-22.

2. The SoC asserts the AINACTS signal to idle the ACP. This is necessary to prevent ACP
transactions from allocating new entries in the L2 cache while the hardware cache flush
is occurring.

3. Assert L2ZFLUSHREQ HIGH.
4.  Hold L2ZFLUSHREQ HIGH until LZFLUSHDONE is asserted.
5.  Deassert LZFLUSHREQ.
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6. In an ACE configuration, assert ACINACTM or, in a CHI configuration, assert
SINACT. Then wait until the STANDBYWFIL2 output is asserted to indicate that the
L2 memory system is idle. All Cortex-A53 processor implementations contain an L2
memory system, including implementations without an L2 cache.

7. Activate the cluster output clamps.

8. Remove power from the PDCORTEXAS53 and PDL2 power domains.

Note

For device powerdown, all operations on a lead core must occur after the equivalent step on all
non-lead cores.

To power up the cluster, apply the following sequence:
1. For each core in the cluster, assert nCPUPORESET LOW.
2. Assert nL2RESET LOW and hold LZRSTDISABLE LOW.

3. Apply power to the PDCORTEXAS53 and PDL2 domains while keeping the signals
described in steps 1 and 2 LOW.

4. Release the cluster output clamps.

5. Continue a normal Cold reset sequence.

Dormant mode

Optionally, the Dormant mode is supported in the cluster. In this mode all the cores and L2
control logic are powered down while the L2 cache RAMs are powered up and retain state. The
RAM blocks that remain powered up during Dormant mode are:

. L2 tag RAMs.
. L2 data RAMs.
. L2 victim RAM.

To support Dormant mode, you must ensure:
. That the L2 cache RAMs are in a separate power domain.

. To clamp all inputs to the L2 cache RAMs to benign values. This avoids corrupting data
when the cores and L2 control power domains enter and exit power down state.

Before entering Dormant mode the architectural state of the cluster, excluding the contents of
the L2 cache RAMs that remain powered up, must be saved to external memory.

As part of the exit from Dormant mode to Normal state, the SoC must perform a Cold reset
sequence. The SoC must assert the reset signals until power is restored. After power is restored,
the cluster exits the Cold reset sequence, and the architectural state must be restored.

To enter Dormant mode, apply the following sequence:

1. Disable the data cache, by clearing the SCTLR.C bit, or the HSCTLR.C bit if in Hyp
mode. This prevents more data cache allocations and causes cacheable memory attributes
to change to Normal Non-cacheable. Subsequent loads and stores do not access the L1 or
L2 caches.

2. Clean and invalidate all data from the L1 Data cache. The L2 duplicate snoop tag RAM
for this core is now empty. This prevents any new data cache snoops or data cache
maintenance operations from other cores in the cluster being issued to this core.
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10.

11.

12.
13.

Functional Description

Disable data coherency with other cores in the cluster, by clearing the
CPUECTLR.SMPEN bit. Clearing the SMPEN bit enables the core to be taken out of
coherency by preventing the core from receiving cache or TLB maintenance operations
broadcast by other cores in the cluster.

Save architectural state, if required. These state saving operations must ensure that the
following occur:

. All ARM registers, including the CPSR and SPSR, are saved.
. All system registers are saved.
. All debug related state is saved.

Execute an ISB instruction to ensure that all of the register changes from the previous steps
have been committed.

Execute a DSB instruction to ensure that all cache, TLB and branch predictor maintenance
operations issued by any core in the cluster before the SMPEN bit was cleared have
completed. In addition, this ensures that all state saving has completed.

Execute a WFI instruction and wait until the STANDBY WFI output is asserted, to indicate
that the core is in idle and low-power state.

Repeat the previous steps for all cores, and wait for all STANDBYWFTI outputs to be
asserted.

If the ACP interface is configured, ensure that any master connected to the interface does
not send new transactions, then assert AINACTS.

If ACE is implemented, the SoC asserts the input pin ACINACTM to idle the AXI master
interface after all snoop transactions have been sent on the interface. If CHI is
implemented, the SoC asserts the input pin SINACT.

When the L2 has completed the outstanding transactions for the AXI master and slave
interfaces, STANDBYWFIL2 is asserted to indicate that L2 memory system is idle. All
Cortex-AS53 processor implementations contain an L2 memory system, including
implementations without an L2 cache.

When all cores STANDBY WFI and STANDBY WFIL2 are asserted, the cluster is ready
to enter Dormant mode.

Activate the L2 cache RAM input clamps.

Remove power from the PDCPU and PDCORTEXAS53 power domains.

To exit Dormant mode, apply the following sequence:

1.

Apply a normal Cold reset sequence. You must apply resets to the cores and the L2
memory system logic until power is restored. During this reset sequence,
L2RSTDISABLE must be held HIGH to disable the L2 cache hardware reset
mechanism.

When power has been restored, release the L2 cache RAM input clamps.
Continue a normal Cold reset sequence with LZRSTDISABLE held HIGH.

The architectural state must be restored, if required.

Retention state

Contact ARM for information about retention state.
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243 Event communication using WFE or SEV

An external agent can use the EVENTI pin to participate in a WFE or SEV event
communication with the Cortex-A53 processor. When this pin is asserted, it sends an event
message to all the cores in the device. This is similar to executing a SEV instruction on one core
in the cluster. This enables the external agent to signal to the cores that it has released a
semaphore and that the cores can leave the WFE low-power state. The EVENTI input pin must
remain HIGH for at least one CLKIN clock cycle to be visible by the cores.

The external agent can determine that at least one of the cores in the cluster has executed an SEV
instruction by checking the EVENTO pin. When SEV is executed by any of the cores in the
cluster, an event is signaled to all the cores in the device, and the EVENTO pin is asserted. This
pin is asserted HIGH for three CLKIN clock cycles when any core in the cluster executes an
SEV instruction.

244 Communication to the Power Management Controller

Communication between the Cortex-AS53 processor and the system power management
controller can be performed using one or both of the:

. STANDBYWFI[3:0] and STANDBYWFIL?2 signals.
. O-channel on page 2-28.

STANDBYWFI|3:0] and STANDBYWFIL2 signals

The STANDBYWFI|[n] signal indicates when an individual core is in idle and low power state.
The power management controller can remove power from an individual core when
STANDBYWFI|n] is asserted. See Individual core shutdown mode on page 2-22 for more
information.

The STANDBYWFIL2 signal indicates when all individual cores and the L2 memory system
are in idle and low-power state. A power management controller can remove power from the
Cortex-AS53 processor when STANDBYWFIL?2 is asserted. See Cluster shutdown mode
without system driven L2 flush on page 2-24 and Cluster shutdown mode with system driven L2
flush on page 2-24 for more information.

Note

The Cortex-A53 processor includes a minimal L2 memory system in configurations without an
L2 cache. Therefore, the power management controller must always wait for assertion of
STANDBYWFIL2 before removing power from the Cortex-A53 processor.

Figure 2-12 on page 2-28 shows how STANDBYWFI[3:0] and STANDBYWFIL2 correspond
to individual cores and the Cortex-A53 processor.
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Cortex-A53 processor

Data Processing Unit (DPU)

Level 1 memory system

Core 0
‘ 4 Core 1
4 Core 2
‘ 2+ Core 3
v

Snoop Control Unit (SCU)

Level 2 memory system

\ 4 v
STANDBYWEFI[3:0] STANDBYWFIL2

Figure 2-12 STANDBYWFI[3:0] and STANDBYWFIL2 signals

Q-channel

Q-channel is a clock and power controller to device interface, to manage device quiescence. The
interface enables:

. The controller to manage entry to, and exit from, a device quiescent state. Quiescence
management is typically of, but not restricted to, clock gated, and power gated retention
states, of the device or device partitions.

. The capability to indicate a requirement for exit from the quiescent state. The associated
signaling can contain contributions from other devices in the same power domain.

. Optional device capability to deny a quiescence request.
. Safe asynchronous interfacing across clock domains.
Note

For more information, see the Low-Power Interface Specification: ARM* Q-Channel and
P-Channel Interfaces.
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Chapter 3
Programmers Model

This chapter describes the processor registers and provides information for programming the
Cortex-AS53 processor. It contains the following sections:

. About the programmers model on page 3-2.
. ARMNVS-A architecture concepts on page 3-4.
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3.11

Programmers Model

About the programmers model

The Cortex-AS53 processor implements the ARMv8-A architecture. This includes:
. Support for all the Exception levels, ELO-EL3.
. Support for both Execution states, AArch64 and AArch32, at each Exception level.

. The following instruction sets:
AArch64 Execution state
The A64 instruction set.
AArch32 Execution state
The T32 and A32 instruction sets.

. Optionally, an implementation can include one or more of:
—  The Advanced SIMD and floating-point instructions, in all instruction sets.

—  The Cryptography Extension, that provides additional instructions in all instruction
sets.

See the ARM™ Architecture Reference Manual ARMVS, for ARMvS-A architecture profile for
more information.

This section describes:

. Advanced SIMD and floating-point support.
. Memory model on page 3-3.

. Jazelle implementation on page 3-3.

. Modes of operation on page 3-3.

Advanced SIMD and floating-point support

Advanced SIMD is a media and signal processing architecture that adds instructions targeted
primarily at audio, video, 3-D graphics, image, and speech processing.

Floating-point performs single-precision and double-precision floating-point operations.

Note

Advanced SIMD, its associated implementations, and supporting software, are commonly
referred to as NEON.

All scalar floating-point instructions are available in the A64 instruction set. All VFP
instructions are available in the A32 and T32 instruction sets.

The same Advanced SIMD instructions are available in both the A32 and T32 instruction sets.
The A64 instruction set offers additional Advanced SIMD instructions, including
double-precision floating-point vector operations.

See the ARM™ Architecture Reference Manual ARMVS, for ARMvS-A architecture profile for
more information.

See the ARM® Cortex®-A53 MPCore Processor Advanced SIMD and floating-point Extension
Technical Reference Manual for implementation-specific information.
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3.1.3

3.1.4

Memory model

Programmers Model

The Cortex-AS53 processor views memory as a linear collection of bytes numbered in ascending
order from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second
stored word.

The processor can store words in memory as either:
. Big-endian format.
. Little-endian format.

See the ARM™ Architecture Reference Manual ARMVS, for ARMvS-A architecture profile for
more information about big-endian and little-endian memory systems.

Note

Instructions are always little-endian.

Jazelle implementation

The Cortex-AS53 processor supports a trivial Jazelle implementation. This means:
. Jazelle state is not supported.
. The BXJ instruction behaves as a BX instruction.

In the trivial Jazelle implementation, the processor does not accelerate the execution of any
bytecodes, and the JVM uses software routines to execute all bytecodes. See the ARM™
Architecture Reference Manual ARMvS, for ARMvS-A architecture profile for information.

Modes of operation

In AArch32, the processor has the following instruction set operating states that are controlled
by the T bit and J bit in the CPSR.

A32 The processor executes 32-bit, word-aligned A32 instructions.

T32 The processor executes 16-bit and 32-bit, halfword-aligned T32
instructions.

The J bit and the T bit determine the instruction set used by the processor. Table 3-1 shows the
encoding of these bits.

Table 3-1 CPSR J and T bit encoding

J T Instruction set state

0 0 A32

0 1 T32

Note

. The processor does not support Jazelle state. This means that there is no processor state
where the J bitis 1 and T bit is 0.

. The processor does not support T32EE state. This means that there is no processor state

where the J bitis 1 and T bit is 1.

. Transition between A32 and T32 instruction set states does not affect the processor mode

or the register contents.
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3.2 ARMv8-A architecture concepts

This section introduces both the ARMvS architectural concepts and the associated terminology.
The following sections describe the ARMvS architectural concepts. Each section introduces the
corresponding terms that are used to describe the architecture:

. Execution state.

. Exception levels on page 3-5.

. Security state on page 3-6.

. Rules for changing execution state on page 3-7.
. Stack Pointer selection on page 3-7.

. ARMVS security model on page 3-8.
. Instruction set state on page 3-10.
. AArch32 execution modes on page 3-10.

Note

A thorough understanding of the terminology that is defined in this section is a prerequisite for
reading the remainder of this manual.

3.21 Execution state

The execution state defines the processor execution environment, including:
. Supported register widths.
. Supported instruction sets.
. Significant aspects of:
—  The execution model.
—  The Virtual Memory System Architecture (VMSA).
—  The programmers model.

The execution states are:

AArché4 The 64-bit execution state. This execution state:

. Features 31 64-bit general purpose registers, with a 64-bit Program
Counter (PC), Stack Pointer (SP), and Exception Link Registers (ELRs).

. Provides a single instruction set, A64. For more information, see
Instruction set state on page 3-10.

. Defines the ARMv8 exception model, with four Exception levels,
ELO0-EL3, that provide an execution privilege hierarchy.

. Features virtual addresses (VAs) held in 64-bit registers. The Cortex-A53
VMSA implementation maps these to 40-bit physical address (PA) maps.

. Defines several PSTATE elements that hold processor state. The A64
instruction set includes instructions that operate directly on various
PSTATE elements.

. Names each system register using a suffix that indicates the lowest
Exception level at which the register can be accessed.

AArch32 The 32-bit execution state. This execution state is backwards-compatible with
implementations of the ARMv7-A architecture profile that include the Security
Extensions and the Virtualization Extensions:

. Features 13 32-bit general-purpose registers, and a 32-bit PC, SP, and link
register (LR). Some of these registers have multiple banked instances for
use in different processor modes.

DDI 0500J Copyright © 2013-2014, 2016, 2018 Arm. All rights reserved. 3-4
ID012219 Non-Confidential



3.2.2
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. Provides two instruction sets, A32 and T32. For more information, see
Instruction set state on page 3-10.

. Provides an exception model that maps the ARMv7 exception model onto
the ARMvS exception model and Exception levels. For exceptions taken to
an Exception level that is using AArch32, this supports the ARMv7
exception model use of processor modes.

. Features 32-bit VAs. The VMSA maps these to PA maps that can support
PAs of up to 40 bits.

. Collects processor state into the Current Program State Register (CPSR).

The processor can move between Execution states only on a change of Exception level, and
subject to the rules given in Rules for changing execution state on page 3-7. This means
different software layers, such as an application, an operating system kernel, and a hypervisor,
executing at different Exception levels, can execute in different Execution states.

Exception levels

The ARMvS exception model defines Exception levels EL0-EL3, where:

. ELO has the lowest software execution privilege, and execution at ELO is called
unprivileged execution.

. Increased Exception levels, from 1 to 3, indicate increased software execution privilege.
. EL2 provides support for processor virtualization.
. EL3 provides support for a Secure state, see Security state on page 3-6.

The Cortex-A53 processor implements all the Exception levels, ELO-EL3, and supports both
Execution states, AArch64 and AArch32, at each Exception level.

Execution can move between Exception levels only on taking an exception, or on returning from
an exception:

. On taking an exception, the Exception level either increases or remains the same. The
Exception level cannot decrease on taking an exception.

. On returning from an exception, the Exception level either decreases or remains the same.
The Exception level cannot increase on returning from an exception.

The Exception level that execution changes to, or remains in, on taking an exception, is called
the target Exception level of the exception, and:

. Every exception type has a target Exception level that is either:
—  Implicit in the nature of the exception.
—  Defined by configuration bits in the system registers.

. An exception cannot target the ELO Exception level.

Exception levels, and privilege levels, are defined within a particular Security state, and ARMvS8
security model on page 3-8 describes the permitted combinations of Security state and
Exception level.

Exception terminology

This section defines terms used to describe the navigation between Exception levels.
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Terminology for taking an exception

An exception is generated when the processor first responds to an exceptional condition. The
processor state at this time is the state that the exception is faken from. The processor state
immediately after taking the exception is the state that the exception is taken to.

Terminology for returning from an exception

To return from an exception, the processor must execute an exception return instruction. The
processor state when an exception return instruction is committed for execution is the state the
exception returns from. The processor state immediately after the execution of that instruction
is the state the exception returns to.

Exception level terminology

An Exception level, ELn, with a larger value of n than another Exception level, is described as
being a higher Exception level than the other Exception level. For example, EL3 is a higher
Exception level than EL1.

An Exception level with a smaller value of n than another Exception level is described as being
a lower Exception level than the other Exception level. For example, ELO is a lower Exception
level than EL1.

An Exception level is described as:
. Using AArch64 when execution in that Exception level is in the AArch64 Execution state.
. Using AArch32 when execution in that Exception level is in the AArch32 Execution state.

Typical Exception level usage model

The architecture does not specify what software uses the different Exception levels, and such
choices are outside the scope of the architecture. However, the following is a common usage
model for the Exception levels:

ELO Applications.

EL1 OS kernel and associated functions that are typically described as privileged.
EL2 Hypervisor.

EL3 Secure monitor.

3.2.3  Security state
An ARMvS8 implementation that includes the EL3 Exception level provides the following
Security states, each with an associated memory address space:
Secure state
In Secure state, the processor:
. Can access both the Secure memory address space and the Non-secure
memory address space.
. When executing at EL3, can access all the system control resources.
Non-secure state
In Non-secure state, the processor:
. Can access only the Non-secure memory address space.
. Cannot access the Secure system control resources.
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The AArch32 Security state model is unchanged from the model for an ARMv7 implementation
that includes the Security Extensions and the Virtualization Extensions. When the
implementation uses the AArch32 Execution state for all Exception levels, many system
registers are banked to provide Secure and Non-secure instances, and:

. The Secure instance is accessible only at EL3.
. The Non-secure instance is accessible at EL1 or higher.
. The two instances of a Banked register have the same name.

The ARMvVS security model on page 3-8 describes how the Security state interacts with other
aspects of the ARMvS architectural state.
3.24 Rules for changing execution state

This introduction to moving between execution states does not consider exceptions caused by
debug events.

The execution state, AArch64 or AArch32, can change only on a change of Exception level,
meaning it can change only on either:

. Taking an exception to a higher Exception level.
. Returning from an exception to a lower Exception level.
Note

The execution state cannot change if, on taking an exception or on returning from an exception,
the Exception level remains the same.

On taking an exception to a higher Exception level, the execution state:

. Can either:
—  Remain the same.
—  Increase from AArch32 state to AArch64 state.

. Cannot decrease from AArch64 state to AArch32 state.
On returning from an exception to a lower Exception level, the execution state:

. Can either:
—  Remain the same.
—  Decrease from AArch64 state to AArch32 state.

. Cannot increase from AArch32 state to AArch64 state.

On powerup and on reset, the processor enters EL3, the highest Exception level. The execution
state for this Exception level is a property of the implementation, and is determined by a
configuration input signal. For the other Exception levels the execution state is determined as
follows:

. For an exception return to ELO, the ELO execution state is specified as part of the
exception return, subject to the rules given in this section.

. Otherwise, the execution state is determined by one or more system register configuration
bits, that can be set only in a higher Exception level.
3.2.5 Stack Pointer selection
Stack Pointer behavior depends on the execution state, as follows:

AArch64 In ELO, the Stack Pointer, SP, maps to the SP_ELO Stack Pointer register.
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Taking an exception selects the default Stack Pointer for the target Exception
level, meaning SP maps to the SP_ELx Stack Pointer register, where x is the
Exception level.

Software executing in the target Exception level can execute an MSR SPSel, #Imml
instruction to select whether to use the default SP_ ELx Stack Pointer, or the
SP_ELO Stack Pointer.

The selected Stack Pointer can be indicated by a suffix to the Exception level:
t Indicates use of the SP__ELO Stack Pointer.
h Indicates use of the SP__ELx Stack Pointer.

Table 3-2 shows the set of AArch64 Stack Pointer options.

Table 3-2 AArch64 Stack Pointer options

. AArch64 Stack Pointer
Exception level

options
ELO ELOt
EL1 EL1t, EL1h
EL2 EL2t, EL2h
EL3 EL3t, EL3h

In AArch32 state, each mode that can be the target of an exception has its own
banked copy of the Stack Pointer. For example, the banked Stack Pointer for Hyp
mode is called SP_hyp. Software executing in one of these modes uses the banked
Stack Pointer for that mode.

The modes that have banked copies of the Stack Pointer are FIQ mode, IRQ
mode, Supervisor mode, Abort mode, Undefined mode, Hyp mode, and Monitor
mode. Software executing in User mode or System mode uses the User mode
Stack Pointer, SP_usr.

For more information, see A4rch32 execution modes on page 3-10.

ARMv8 security model

The Cortex-A53 processor implements all of the Exception levels. This means:

. EL3 exists only in Secure state and a change from Secure state to Non-secure state is made
only by an exception return from EL3.

. EL2 exists only in Non-secure state.

To provide compatibility with ARMv7, the Exception levels available in Secure state are
modified when EL3 is using AArch32. The following sections describe the security model:

. Security model when EL3 is using AArch64.

. Security model when EL3 is using AArch32 on page 3-9.

Security model when EL3 is using AArch64

When EL3 is using AArch64, Figure 3-1 on page 3-9 shows the security model, and the
expected use of the different Exception levels. This figure shows how instances of EL0O and EL1
are present in both security states.
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Secure state

AArch32 or AArch32 or AArch32 or AArch32 or AArch32 or AArch32 or
AArch64’ AArch64’ AArch64’ AArch64’ AArche4’ AArch64’
ELO App1 App2 App1 App2 Secure App1 Secure App2
Modes: Modes: Modes: Modes: Modes: Modes:
User User User User User User
AArch32 or AArch64* AArch32 or AArch64* AArch32 or AArch64
Guest OS1 Guest OS2 Secure OS
ELA1
Modes: g stem, FIQ, IRQ, Modes: g stem, FIQ, IRQ, Modes: g ctem, FIQ, IRQ,
Supervisor, Abort, Undefined Supervisor, Abort, Undefined Supervisor, Abort, Undefined
AArch32 or AArch64
Hypervisor
EL2
Modes:
Hyp
AArch64
EL3 Secure monitor
1 AArch64 permitted only if EL1 is using AArch64
¥ AArch64 permitted only if EL2 is using AArch64
Figure 3-1 ARMv8 security model when EL3 is using AArch64
Security model when EL3 is using AArch32
To provide software compatibility with VMSAv7 implementations that include the security
extensions, in Secure AArch32 state, all modes other than User mode have the same execution
privilege. This means that, in an implementation where EL3 is using AArch32, the security
model is as shown in Figure 3-2 on page 3-10. This figure also shows the expected use of the
different Exception levels and processor modes.
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Secure state

AArch32 AArch32 AArch32 AArch32 AArch32 AArch32
App1 App2 App1 App2 Secure App1 Secure App2
ELO |
Modes: Modes: Modes: Modes: i | Modes: Modes:
User User User User i User User
AArch32 AArch32
Guest OS1 Guest OS2
EL1
Modes: System, FIQ, IRQ, Modes: System, FIQ, IRQ,
Supervisor, Abort, Undefined Supervisor, Abort, Undefined
AArch32
Hypervisor
EL2
Modes:
Hyp
AArch32
Secure monitor Secure OS
EL3
Modes: Vonit Modes: System, FIQ, IRQ,
CIILeElr Supervisor, Abort, Undefined
Figure 3-2 ARMv8 security model when EL3 is using AArch32
For more information about the AArch32 processor modes see AArch32 execution modes.
3.2.7 Instruction set state
The processor instruction set state determines the instruction set that the processor executes. The
instruction sets depend on the execution state:
AArché64 AArch64 state supports only a single instruction set, called A64. This is a
fixed-width instruction set that uses 32-bit instruction encodings.
AArch32  AArch32 state supports the following instruction sets:

A32 This is a fixed-length instruction set that uses 32-bit instruction
encodings. Before the introduction of ARMvVS, it was called the ARM
instruction set.

T32 This is a variable-length instruction set that uses both 16-bit and 32-bit
instruction encodings. Before the introduction of ARMvS, it was
called the Thumb instruction set state.

3.2.8 AArch32 execution modes
ARMV7 and earlier versions of the ARM architecture define a set of named processor modes,
including modes that correspond to different exception types. For compatibility, AArch32 state
retains these processor modes.
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Table 3-3 shows the AArch32 processor modes, and the Exception level of each mode.

Table 3-3 AArch32 processor modes and associated Exception levels

AArch32 processor mode  EL3 using Security state Exception level
User AArch32 or AArch64  Non-secure or Secure  ELO
System, FIQ, IRQ, AArch64 Non-secure or Secure  EL1
Supervisor, AArch32 Non-secure EL1
Abort, Undefined AArch32 Secure EL3
Hyp AArch32 or AArch64  Non-secure only EL2
Monitor AArch32 Secure only EL3

When the EL3 using column of Table 3-3 shows:

AArché4
AArch32

The row refers to information shown in Figure 3-1 on page 3-9.
The row refers to information shown in Figure 3-2 on page 3-10.

A processor mode name does not indicate the current security state. To distinguish between a
mode in Secure state and the equivalent mode in Non-secure state, the mode name is qualified
as Secure or Non-secure. For example, a description of AArch32 operation in EL1 might
reference the Secure FIQ mode, or to the Non-secure FIQ mode.
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Chapter 4

System Control

This chapter describes the system registers, their structure, operation, and how to use them. It
contains the following sections:

About system control on page 4-2

AArch64 register summary on page 4-3.
AArch64 register descriptions on page 4-16.
AArch32 register summary on page 4-126.
AArch32 register descriptions on page 4-149.
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4.1 About system control
The system registers control and provide status information for the functions implemented in
the processor. The main functions of the system registers are:
. Overall system control and configuration.
. Memory Management Unit (MMU) configuration and management.
. Cache configuration and management.
. System performance monitoring.
. GIC configuration and management.
The system registers are accessible in the AArch64 and AArch32 Execution states. The
execution states are described in the ARMVS-A architecture concepts on page 3-4.
The system registers accessed in the AArch64 Execution state are described in the A4rch64
register descriptions on page 4-16.
The system registers accessed in the AArch32 Execution state are described in the A4rch32
register descriptions on page 4-149.
Some of the system registers can be accessed through the memory-mapped or external debug
interfaces.
Bits in the system registers that are described in the Armv7 architecture are redefined in the
ArmvS8-A architecture:
. UNK/SBZP, RAZ/SBZP, and RAZ/WI are redefined as RESO.
. UNK/SBOP and RAO/SBOP are redefined as RESI.
RESO and RES] are described in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.
For more information on the execution states, see the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.
411  AArch32 registers affected by CP15SDISABLE
In AArch32 state, the CP15SDISABLE input disables write access to certain system registers.
The Cortex-A53 processor does not have any IMPLEMENTATION DEFINED registers that are
affected by CP15SDISABLE.
For a list of registers affected by CP15SDISABLE, see the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.
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4.2 AArch64 register summary

This section gives a summary of the system registers in the AArch64 Execution state. For more
information on using the system registers, see the Arm® Architecture Reference Manual Armv8,
for Armv8-A architecture profile.

The following subsections describe the system registers by functional group:
. AArch64 identification registers.
. AArch64 exception handling registers on page 4-5.

. AArch64 virtual memory control registers on page 4-5.
. AArch64 other system control registers on page 4-6.

. AArch64 cache maintenance operations on page 4-7.

. AArch64 TLB maintenance operations on page 4-7.

. AArch64 address translation operations on page 4-8.

. AArch64 miscellaneous operations on page 4-9.

. AArch64 performance monitor registers on page 4-9.

. AArch64 reset registers on page 4-10.

. AArch64 secure registers on page 4-10.

. AArch64 virtualization registers on page 4-11.

. AArch64 EL2 TLB maintenance operations on page 4-12.
. AArch64 GIC system registers on page 4-13.

. AArch64 Generic Timer registers on page 4-14.

. AArch64 thread registers on page 4-14.

. AArch64 implementation defined registers on page 4-14.

421 AArch64 identification registers

Table 4-1 shows the identification registers in AArch64 state. Bits[63:32] are reset to 0x00000000
for all 64-bit registers in Table 4-1.

Table 4-1 AArch64 identification registers

Name Type Reset Width  Description

MIDR _ELL1 RO 0x410FD034 32 Main ID Register, ELI on page 4-16

MPIDR EL1 RO -a 64 Multiprocessor Affinity Register on page 4-17

REVIDR ELI RO 0x00000000 32 Revision ID Register on page 4-18

ID_PFRO EL1 RO 0x00000131 32 AArch32 Processor Feature Register () on page 4-19

ID_PFR1 EL1 RO 0x10011011b 32 AArch32 Processor Feature Register 1 on page 4-20

ID DFRO EL1 RO 0x03010066 32 AArch32 Debug Feature Register () on page 4-21

ID _AFRO EL1 RO 0x00000000 32 AArch32 Auxiliary Feature Register () on page 4-23

ID_ MMFRO_EL1 RO 0x10201105 32 AArch32 Memory Model Feature Register () on page 4-23

ID_ MMFRI1 ELI1 RO 0x40000000 32 AArch32 Memory Model Feature Register 1 on page 4-24

ID_ MMFR2 EL1 RO 0x01260000 32 AArch32 Memory Model Feature Register 2 on page 4-25

ID_ MMFR3 EL1 RO 0x02102211 32 AArch32 Memory Model Feature Register 3 on page 4-27

ID ISARO EL1 RO 0x02101110 32 AArch32 Instruction Set Attribute Register () on page 4-28
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Table 4-1 AArch64 identification registers (continued)

ID012219

Name Type Reset Width  Description
ID ISARI1 EL1 RO 0x13112111 32 AArch32 Instruction Set Attribute Register 1 on page 4-29
ID ISAR2 EL1 RO 0x21232042 32 AArch32 Instruction Set Attribute Register 2 on page 4-31
ID ISAR3 EL1 RO 0x01112131 32 AArch32 Instruction Set Attribute Register 3 on page 4-33
ID ISAR4 ELL1 RO 0x00011142 32 AArch32 Instruction Set Attribute Register 4 on page 4-34
ID_ISARS ELL1 RO 0x00011121¢ 32 AArch32 Instruction Set Attribute Register 5 on page 4-35
ID_AA64PFRO_EL1 RO 0x01002222d¢ 64 AArch64 Processor Feature Register () on page 4-37
ID AA64PFR1 EL1 RO 0x00000000 64 AArch64 Processor Feature Register 1
ID_AA64DFRO EL1 RO 0x10305106 64 AArch64 Debug Feature Register 0, ELI on page 4-38
ID_AA64DFR1 EL1 RO 0x00000000 64 AArch64 Debug Feature Register 1
ID_AA64AFRO_EL1 RO 0x00000000 64 AArch64 Auxiliary Feature Register 0
ID_AA64AFR1 EL1 RO 0x00000000 64 AArch64 Auxiliary Feature Register 1
ID_AA64ISARO EL1 RO 0x00011120f 64 AArch64 Instruction Set Attribute Register 0, EL1 on page 4-39
ID_AA64ISAR1 EL1 RO 0x00000000 64 AArch64 Instruction Set Attribute Register 1
ID_AA64MMFRO EL1 RO 0x00001122 64 AArch64 Memory Model Feature Register 0, ELI on page 4-41
ID_AA64MMFR1 EL1 RO 0x00000000 64 AArch64 Memory Model Feature Register 1
CCSIDR_EL1 RO -8 32 Cache Size ID Register on page 4-42
CLIDR_EL1 RO 0x0A200023h 64 Cache Level ID Register on page 4-44
AIDR EL1 RO 0x00000000 32 Auxiliary ID Register on page 4-45
CSSELR_EL1 RW 0x00000000 32 Cache Size Selection Register on page 4-45
CTR_ELO RO 0x84448004 32 Cache Type Register on page 4-46
DCZID ELO RO 0x00000004 32 Data Cache Zero ID Register on page 4-47
VPIDR_EL2 RW 0x410FD034 32 Virtualization Processor ID Register on page 4-48
VMPIDR EL2 RO - 64 Virtualization Multiprocessor ID Register on page 4-49

a. The reset value depends on the primary inputs, CLUSTERIDAFF1 and CLUSTERIDAFF2, and the number of cores that the device

implements.

b. Bits [31:28] are 0x1 if the GIC CPU interface is enabled, and 0x0 otherwise.

c. ID_ISAR5 _EL1 has the value 0x00010001 if the Cryptography Extension is not implemented and enabled.

d. Bits [27:24] are 0x1 if the GIC CPU interface is enabled, and 0x0@ otherwise.

e. Bits [23:16] are 0x00 if the Advanced SIMD and Floating-point Extension is implemented, and 0xFF otherwise.

f. ID_AA64ISARO_EL1 has the value 0x00010000 if the Cryptography Extension is not implemented and enabled.

g. The reset value depends on the implementation. See the register description for details.

h. The value is 0x09200003 if the L2 cache is not implemented.

i. The reset value is the value of the Multiprocessor Affinity Register.
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4.2.2 AArch64 exception handling registers
Table 4-2 shows the fault handling registers in AArch64 state. Bits[63:32] are reset to
0x00000000 for all 64-bit registers in Table 4-2.
Table 4-2 AArch64 exception handling registers
Name Type Reset Width  Description
AFSRO EL1 RW 0x00000000 32 Auxiliary Fault Status Register 0, EL1, EL2 and EL3 on page 4-90
AFSR1_EL1 RW 0x00000000 32 Auxiliary Fault Status Register 1, ELI, EL2 and EL3 on page 4-90
ESR ELI1 RwW UNK 32 Exception Syndrome Register, ELI on page 4-90
IFSR32 EL2 RW UNK 32 Instruction Fault Status Register, EL2 on page 4-91
AFSRO EL2 RW 0x00000000 32 Auxiliary Fault Status Register 0, EL1, EL2 and EL3 on page 4-90
AFSR1 EL2 RW 0x00000000 32 Auxiliary Fault Status Register 1, ELI, EL2 and EL3 on page 4-90
ESR _EL2 RW UNK 32 Exception Syndrome Register, EL2 on page 4-95
AFSRO EL3 RW 0x00000000 32 Auxiliary Fault Status Register 0, ELI, EL2 and EL3 on page 4-90
AFSR1_EL3 RW 0x00000000 32 Auxiliary Fault Status Register 1, ELI, EL2 and EL3 on page 4-90
ESR EL3 RW UNK 32 Exception Syndrome Register, EL3 on page 4-96
FAR EL1 RW UNK 64 Fault Address Register, ELI on page 4-97
FAR EL2 RW UNK 64 Fault Address Register, EL2 on page 4-98
HPFAR EL2 RW 0x00000000 64 Hypervisor IPA Fault Address Register, EL2 on page 4-99
FAR_EL3 RW UNK 64 Fault Address Register, EL3 on page 4-104
VBAR EL1 RW UNK 64 Vector Base Address Register, ELI on page 4-110
ISR EL1 RO UNK 32 Interrupt Status Register on page 4-114
VBAR EL2 RwW UNK 64 Vector Base Address Register, EL2 on page 4-111
VBAR EL3 RW UNK 64 Vector Base Address Register, EL3 on page 4-112
4.2.3 AArch64 virtual memory control registers
Table 4-3 shows the virtual memory control registers in AArch64 state. Bits[63:32] are reset to
0x00000000 for all 64-bit registers in Table 4-3.
Table 4-3 AArch64 virtual memory control registers
Name Type Reset Width Description
SCTLR _EL1 RW 0x00C508382 32 System Control Register, EL1 on page 4-50
SCTLR EL2 RW 0x30C50838b 32 System Control Register, EL2 on page 4-57
SCTLR _EL3 RW 0x00C508382 32 System Control Register, EL3 on page 4-70
TTBRO EL1 RW UNK 64 Translation Table Base Register 0, ELI on page 4-75
TTBR1 _ELI RW UNK 64 Translation Table Base Register 1 on page 4-76
TCR_EL1 RW UNK 64 Translation Control Register, ELI on page 4-80
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Table 4-3 AArch64 virtual memory control registers (continued)

Name Type Reset Width Description

TTBRO _EL2 RW UNK 64 Translation Table Base Address Register 0, EL2¢

TCR_EL2 RW UNK 32 Translation Control Register, EL2 on page 4-83

VTTBR _EL2 RW UNK 64 Virtualization Translation Table Base Address Register, EL2¢

VTCR _EL2 RW UNK 32 Virtualization Translation Control Register, EL2 on page 4-85

TTBRO EL3 RW UNK 64 Translation Table Base Register 0, EL3 on page 4-87

TCR_EL3 RW UNK 32 Translation Control Register, EL3 on page 4-88

MAIR_EL1 RW UNK 64 Memory Attribute Indirection Register, EL1 on page 4-107

AMAIR EL1 RW 0x00000000 64 Auxiliary Memory Attribute Indirection Register, EL1, EL2 and EL3 on
page 4-90

MAIR_EL2 RW UNK 64 Memory Attribute Indirection Register, EL2 on page 4-109

AMAIR EL2 RW 0x00000000 64 Auxiliary Memory Attribute Indirection Register, EL1, EL2 and EL3 on
page 4-90

MAIR _EL3 RW UNK 64 Memory Attribute Indirection Register, EL3 on page 4-109

AMAIR EL3 RW 0x00000000 64 Auxiliary Memory Attribute Indirection Register, EL1, EL2 and EL3 on
page 4-90

CONTEXTIDR_EL1 RW UNK 32 Context ID Register, EL1¢

a. The reset value depends on primary inputs CFGTE and CFGEND. Table 4-3 on page 4-5 assumes these signals are LOW.
b. The reset value depends on primary inputs CFGTE, CFGEND and VINITHI. Table 4-3 on page 4-5 assumes these signals are LOW.

c. See the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

4.2.4 AArch64 other system control registers

Table 4-4 shows the other system control registers in AArch64 state.

Table 4-4 AArch64 other system control registers

Name Type Reset Width Description
ACTLR EL1 RW 0x00000000 32 Auxiliary Control Register, ELI on page 4-53
CPACR EL1 RW 0x00000000 32 Architectural Feature Access Control Register on page 4-56
ACTLR _EL2 RW 0x00000000 32 Auxiliary Control Register, EL2 on page 4-53
ACTLR_EL3 RW 0x00000000 32 Auxiliary Control Register, EL3 on page 4-55
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425 AArch64 cache maintenance operations

Table 4-5 shows the System instructions for cache and maintenance operations in AArch64
state. See the Arm® Architecture Reference Manual Armv8 for more information about these
operations.

Table 4-5 AArch64 cache maintenance operations

Name Description

IC TIALLUIS Instruction cache invalidate all to PoU? Inner Shareable

IC IALLU Instruction cache invalidate all to PoU

IC IVAU Instruction cache invalidate by virtual address (VA) to PoU
DC IVAC Data cache invalidate by VA to PoCP

DC ISW Data cache invalidate by set/way

DC CSW Data cache clean by set/way

DC CISwW Data cache clean and invalidate by set/way

DC ZVA Data cache zero by VA

DC CVAC Data cache clean by VA to PoC

DC CVAU Data cache clean by VA to PoU

DC CIVAC Data cache clean and invalidate by VA to PoC

a. PoU = Point of Unification. PoU is set by the BROADCASTINNER
signal and can be in the L1 data cache or outside of the processor, in
which case PoU is dependent on the external memory system.

b. PoC = Point of Coherence. The PoC is always outside of the processor
and is dependent on the external memory system.

4.2.6 AArch64 TLB maintenance operations

Table 4-6 shows the System instructions for TLB maintenance operations in AArch64 state. See
the Arm® Architecture Reference Manual Armv8 for more information about these operations.

Table 4-6 AArch64 TLB maintenance operations

Name

Description

TLBI VMALLE1IS

TLBI VAELIS

TLBI ASIDELIS

TLBI VAAE1IS

TLBI VALE1IS

TLBI VAALELIS

Invalidate all stage 1 translations used at EL1 with the current virtual machine identifier (VMID) in the Inner
Shareable

Invalidate translation used at EL1 for the specified VA and Address Space Identifier (ASID) and the current VMID,
Inner Shareable

Invalidate all translations used at EL1 with the current VMID and the supplied ASID, Inner Shareable

Invalidate all translations used at EL1 for the specified address and current VMID and for all ASID values, Inner
Shareable

Invalidate all entries from the last level of stage 1 translation table walk used at EL1 with the supplied ASID and
current VMID, Inner Shareable

Invalidate all entries from the last level of stage 1 translation table walk used at EL1 for the specified address and
current VMID and for all ASID values, Inner Shareable
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Table 4-6 AArch64 TLB maintenance operations (continued)

Name Description

TLBI VMALLEL Invalidate all stage 1 translations used at EL1 with the current VMID

TLBI VAE1 Invalidate translation used at EL1 for the specified VA and ASID and the current VMID

TLBI ASIDE1 Invalidate all translations used at EL1 with the current VMID and the supplied ASID

TLBI VAAEL Invalidate all translations used at EL1 for the specified address and current VMID and for all ASID values

TLBI VALE1 Invalidate all entries from the last level of stage 1 translation table walk used at EL1 with the supplied ASID and
current VMID

TLBI VAALE1l Invalidate all entries from the last level of stage 1 translation table walk used at EL1 for the specified address and

current VMID and for all ASID values

The Virtualization registers include additional TLB operations for use in Hyp mode. For more
information, see AArch64 EL2 TLB maintenance operations on page 4-12.

4.2.7 AArch64 address translation operations
Table 4-7 shows the address translation register in AArch64 state.

Table 4-7 AArch64 address translation register

Name Type Reset Width Description

PAR EL1 RW UNK 64 Physical Address Register, ELI on page 4-105

Table 4-8 shows the System instructions for address translation operations in AArch64 state.
See the Arm® Architecture Reference Manual Armv8 for more information.

Table 4-8 AArch64 address translation operations

Name Description

AT SI1EIR Stage 1 current state EL1 read
AT SIEIW  Stage 1 current state EL1 write

AT S1E@R Stage 1 current state unprivileged read

AT S1EQW Stage 1 current state unprivileged write

AT S1E2R Stage 1 Hyp mode read

AT S1E2W Stage 1 Hyp mode write
AT S12EIR  Stages 1 and 2 Non-secure EL1 read
AT S12E1W  Stages 1 and 2 Non-secure EL1 write

AT S12E@R  Stages 1 and 2 Non-secure unprivileged read

AT S12EQW  Stages 1 and 2 Non-secure unprivileged write

AT S1E3R Stage 1 current state EL3 read

AT S1E3W Stage 1 current state EL3 write
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428 AArch64 miscellaneous operations
Table 4-16 on page 4-14 shows the miscellaneous operations in AArch64 state. See the Arm®
Architecture Reference Manual Armv8 for more information about these operations.
Table 4-9 AArch64 miscellaneous System operations
Name Type Reset Width Description
TPIDR_ELO RW UNK 64 Thread Pointer/ID Register, ELO
TPIDR_EL1 RW UNK 64 Thread Pointer/ID Register, EL1
TPIDRRO ELO Rwa  UNK 64 Thread Pointer/ID Register, Read-Only, ELO
TPIDR EL2 RW UNK 64 Thread Pointer/ID Register, EL2
TPIDR _EL3 RW UNK 64 Thread Pointer/ID Register, EL3
a. RO at ELO.
4.29 AArch64 performance monitor registers
Table 4-10 shows the performance monitor registers in AArch64 state. Bits[63:32] are reset to
0x00000000 for all 64-bit registers in Table 4-10.
Table 4-10 AArch64 performance monitor registers
Name Type Reset Width  Description
PMCR _ELO RW 0x41033000 32 Performance Monitors Control Register on page 12-7
PMCNTENSET _ELO RW UNK 32 Performance Monitors Count Enable Set Registera
PMCNTENCLR_ELO RW UNK 32 Performance Monitors Count Enable Clear Register?
PMOVSCLR _ELO RW UNK 32 Performance Monitors Overflow Flag Status Clear Register2
PMSWINC ELO WO - 32 Performance Monitors Software Increment Register?
PMSELR_ELO RW UNK 32 Performance Monitors Event Counter Selection Register
PMCEIDO_ELO RO Ox67FFBFFF> 32 Performance Monitors Common Event Identification Register () on
page 12-9
PMCEID1 _ELO RO 0x00000000 32 Performance Monitors Common Event Identification Register 1 on
page 12-122
PMCCNTR_ELO RW UNK 64 Performance Monitors Cycle Counter?
PMXEVTYPER_ELO RW UNK 32 Performance Monitors Selected Event Type and Filter Register2
PMXEVCNTR_ELO RW UNK 32 Performance Monitors Selected Event Counter Register?
PMUSERENR_ELO RW 0x00000000 32 Performance Monitors User Enable Register2
PMINTENSET_EL1 RW UNK 32 Performance Monitors Interrupt Enable Set Register?
PMINTENCLR_EL1 RW UNK 32 Performance Monitors Interrupt Enable Clear Register?
PMOVSSET ELO RW UNK 32 Performance Monitors Overflow Flag Status Set Register2
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Table 4-10 AArch64 performance monitor registers (continued)

Name Type Reset Width  Description

PMEVCNTRO _ELO RW UNK 32 Performance Monitor Event Count Registers
PMEVCNTRI_ELO RW UNK 32

PMEVCNTR2 ELO RW UNK 32

PMEVCNTR3_ELO RW UNK 32

PMEVCNTR4_ELO RW UNK 32

PMEVCNTRS5_ELO RW UNK 32

PMEVTYPERO ELO RW UNK 32 Performance Monitor Event Type Registers
PMEVTYPER]1 ELO RW UNK 32

PMEVTYPER2 ELO RW UNK 32

PMEVTYPER3 ELO RW UNK 32

PMEVTYPER4 ELO0 RW UNK 32

PMEVTYPER5 ELO RW UNK 32

PMCCFILTR _ELO RW 0x00000000 32 Performance Monitors Cycle Count Filter Register2

a. See the Arm"™ Architecture Reference Manual Armv8, for Armv8-A architecture profile for more information.

b. The reset value is 0x663FBFFF if the Cortex-A53 processor has not been configured with an L2 cache.

4210 AArch64 reset registers

Table 4-11 shows the reset registers in AArch64 state.

Table 4-11 AArch64 reset management registers

Name Type Reset Width  Description
RVBAR EL3 RO -a 64 Reset Vector Base Address Register, EL3 on page 4-112
RMR EL3 RW 0x00000001 32 Reset Management Register on page 4-113

a. The reset value depends on the RVBARADDR signal.

4.211 AArch64 secure registers
Table 4-12 shows the secure registers in AArch64 state.
Table 4-12 AArch64 security registers
Name Type Reset Width Description
SCR_EL3 RW 0x00000000 32 Secure Configuration Register on page 4-71
SDER32 EL3 RW 0x00000000 32 Secure Debug Enable Register on page 4-74
CPTR EL3 RW 0x000000002 32 Architectural Feature Trap Register, EL3 on page 4-77
MDCR _EL3 RW 0x00000000 32 Monitor Debug Configuration Register, EL3 on page 4-78
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Table 4-12 AArch64 security registers (continued)

Name Type Reset Width  Description

AFSRO EL3 RW 0x00000000 32 Auxiliary Fault Status Register 0, ELI, EL2 and EL3 on page 4-90
AFSR1_EL3 RW 0x00000000 32 Auxiliary Fault Status Register 1, ELI, EL2 and EL3 on page 4-90
VBAR EL3 RW UNK 64 Vector Base Address Register;, EL3 on page 4-112

a. Reset value is 0x00000000 if Advanced SIMD and Floating point are implemented, 0x00000400 otherwise.

4.2.12 AArch64 virtualization registers

Table 4-13 shows the virtualization registers in AArch64 state. Bits[63:32] are reset to
0x00000000 for all 64-bit registers in Table 4-13.

Table 4-13 AArch64 virtualization registers

Name Type Reset Width Description

VPIDR EL2 RW 0x410FD034 32 Virtualization Processor ID Register on page 4-48

VMPIDR EL2 RW -a 64 Virtualization Multiprocessor ID Register on page 4-49

SCTLR _EL2 RW 0x30C50838b 32 System Control Register;, EL2 on page 4-57

ACTLR_EL2 RW 0x00000000 32 Auxiliary Control Register, EL2 on page 4-53

HCR _EL2 RW 0x00000002 64 Hypervisor Configuration Register on page 4-59

MDCR_EL2 RW 0x00000006 32 Hyp Debug Control Register on page 4-64

CPTR _EL2 RW 0x000033FF¢ 32 Architectural Feature Trap Register, EL2 on page 4-66

HSTR EL2 RW 0x00000000 32 Hyp System Trap Register on page 4-67

HACR EL2 RW 0x00000000 32 Hyp Auxiliary Configuration Register on page 4-70

TTBRO_EL2 RW UNK 64 Translation Table Base Address Register 0, EL34

TCR_EL2 RW UNK 32 Translation Control Register, EL2 on page 4-83

VTTBR_EL2 RW UNK 64 Virtualization Translation Table Base Address Register, EL24d
VTCR_EL2 RW UNK 32 Virtualization Translation Control Register, EL2 on page 4-85
DACR32 EL2 RW UNK 32 Domain Access Control Register on page 4-86

AFSRO_EL2 RW 0x00000000 32 Auxiliary Fault Status Register 0, EL1, EL2 and EL3 on page 4-90
AFSR1_EL2 RW 0x00000000 32 Auxiliary Fault Status Register 1, ELI, EL2 and EL3 on page 4-90
ESR EL2 RW UNK 32 Exception Syndrome Register, EL2 on page 4-95

FAR EL2 RW UNK 64 Fault Address Register, EL2 on page 4-98

HPFAR EL2 RW UNK 64 Hypervisor IPA Fault Address Register, EL2 on page 4-99

MAIR EL2 RW UNK 64 Memory Attribute Indirection Register, EL2 on page 4-109
AMAIR EL2 RW 0x00000000 64 Auxiliary Memory Attribute Indirection Register, EL1, EL2 and EL3 on page 4-90
VBAR EL2 RW UNK 64 Vector Base Address Register;, EL2 on page 4-111

a. The reset value is the value of the Multiprocessor Affinity Register.
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b. The reset value depends on inputs, CFGTE and CFGEND. The value shown assumes these signals are set to LOW.
Reset value is 0x0000BFFF if Advanced SIMD and Floating-point are not implemented.

C.

d. See the Arm®™ Architecture Reference Manual ArmvS, for Armv8-A architecture profile for more information.

4.2.13 AArch64 EL2 TLB maintenance operations

Table 4-14 shows the System instructions for TLB maintenance operations added in AArch64
state. See the Arm™ Architecture Reference Manual Armv8 for more information about these

operations.
Table 4-14 AArch64 TLB maintenance operations

Name Description

TLBI IPAS2E1IS Invalidate stage 2 only translations used at EL1 for the specified IPA for the current VMID, Inner Shareable

TLBI IPAS2LE1IS Invalidate entries from the last level of stage 2 only translation used at EL1 for the specified IPA for the current
VMID, Inner Shareable

TLBI ALLE2IS Invalidate all stage 1 translations used at EL2, Inner Shareable

TLBI VAE2IS Invalidate translation used at EL2 for the specified VA and ASID and the current VMID, Inner Shareable

TLBI ALLE1IS Invalidate all stage 1 translations used at EL1, Inner Shareable

TLBI VALE2IS Invalidate all entries from the last level of stage 1 translation table walk used at EL2 with the supplied ASID and
current VMID, Inner Shareable

TLBI VMALLSI2E1IS Invalidate all stage 1 and 2 translations used at EL1 with the current VMID, Inner Shareable

TLBI IPAS2E1 Invalidate stage 2 only translations used at EL1 for the specified IPA for the current VMID

TLBI IPAS2LE1 Invalidate entries from the last level of stage 2 only translation used at EL1 for the specified IPA for the current
VMID

TLBI ALLE2 Invalidate all stage 1 translations used at EL2

TLBI VAE2 Invalidate translation used at EL2 for the specified VA and ASID and the current VMID

TLBI ALLE1 Invalidate all stage 1 translations used at EL1

TLBI VALE2 Invalidate all entries from the last level of stage 1 translation table walk used at EL2 with the supplied ASID and
current VMID

TLBI VMALLSI12E1 Invalidate all stage 1 and 2 translations used at EL1 with the current VMID

TLBI ALLE3IS Invalidate all stage 1 translations used at EL3, Inner Shareable

TLBI VAE3IS Invalidate translation used at EL3 for the specified VA and ASID and the current VMID, Inner Shareable

TLBI VALE3IS Invalidate all entries from the last level of stage 1 translation table walk used at EL3 with the supplied ASID and
current VMID, Inner Shareable

TLBI ALLE3 Invalidate all stage 1 translations used at EL3

TLBI VAE3 Invalidate translation used at EL3 for the specified VA and ASID and the current VMID

TLBI VALE3 Invalidate all entries from the last level of stage 1 translation table walk used at EL3 with the supplied ASID and
current VMID
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Table 4-15 shows the GIC system registers in AArch64 state. See the Arm™ Architecture
Reference Manual Armv8, for Armv8-A architecture profile for more information.

Table 4-15 GIC system registers

Name Type Reset Width Description

ICC_APORO EL1 RW 0x00000000 32 Active Priorities 0 Register 0

ICC_APIRO EL1 RW 0x00000000 32 Active Priorities 1 Register 0

ICC_ASGIIR EL1 WO - 64 Alternate SGI Generation Register 1

ICC_BPRO EL1 RW 0x00000002 32 Binary Point Register 0

ICC BPR1 EL1 RW 0x000000032 32 Binary Point Register 1

ICC CTLR EL1 RW 0x00000400 32 Interrupt Control Register for EL1

ICC CTLR EL3 RW 0x00000400 32 Interrupt Control Register for EL3

ICC DIR EL1 WO - 32 Deactivate Interrupt Register

ICC_EOIRO_EL1 WO - 32 End Of Interrupt Register 0

ICC_EOIR1_EL1 WO - 32 End Of Interrupt Register 1

ICC_HPPIRO_EL1 RO - 32 Highest Priority Pending Interrupt Register 0

ICC HPPIR1 EL1 RO - 32 Highest Priority Pending Interrupt Register 1

ICC TARO EL1 RO - 32 Interrupt Acknowledge Register 0

ICC IAR1 EL1 RO - 32 Interrupt Acknowledge Register 1

ICC IGRPENO EL1 RW 0x00000000 32 Interrupt Group Enable Register 0

ICC_IGRPEN1 EL1 RW 0x00000000 32 Interrupt Group Enable Register 1

ICC IGRPEN1 EL3 RW 0x00000000 32 Interrupt Group Enable Register 1 for EL3

ICC PMR ELI1 RW 0x00000000 32 Priority Mask Register

ICC RPR ELI RO - 32 Running Priority Register

ICC_SGIOR _EL1 WO - 64 SGI Generation Register 0

ICC_SGIIR_EL1 WO - 64 SGI Generation Register 1

ICC_SRE EL1 RW 0x00000000 32 System Register Enable Register for EL1

ICC SRE EL2 RW 0x00000000 32 System Register Enable Register for EL2

ICC_SRE EL3 RW 0x00000000 32 System Register Enable Register for EL3

ICH_APORO EL2 RW 0x00000000 32 Interrupt Controller Hyp Active Priorities Register (0,0)

ICH_AP1RO EL2 RW 0x00000000 32 Interrupt Controller Hyp Active Priorities Register (1,0)

ICH_EISR EL2 RO 0x00000000 32 Interrupt Controller End of Interrupt Status Register

ICH _ELRSR EL2 RO 0x0000000F 32 Interrupt Controller Empty List Register Status Register

ICH_HCR EL2 RW 0x00000000 32 Interrupt Controller Hyp Control Register
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Table 4-15 GIC system registers (continued)

Name Type Reset Width Description
ICH LRO EL2 RW 0x00000000 64 Interrupt Controller List Register 0
00000000
ICH LR1 EL2 RW 0x00000000 64 Interrupt Controller List Register 1
00000000
ICH LR2 EL2 RW 0x00000000 64 Interrupt Controller List Register 2
00000000
ICH LR3 EL2 RW 0x00000000 64 Interrupt Controller List Register 3
00000000
ICH _MISR_EL2 RO 0x00000000 32 Interrupt Controller Maintenance Interrupt State Register
ICH VMCR EL2 RW 0x004C0000 32 Interrupt Controller Virtual Machine Control Register
ICH_VTR_EL2 RO 0x90000003 32 Interrupt Controller VGIC Type Register

a. This is the reset value in non-secure states. In secure states, the reset value is 0x00000002.

4.2.15 AArch64 Generic Timer registers

See Chapter 10 Generic Timer for information on the Generic Timer registers.

4216 AArch64 thread registers

Table 4-16 shows the thread registers in AArch64 state. See the Arm®™ Architecture Reference
Manual Armv8, for Armv8-A architecture profile for more information about these operations.

Table 4-16 AArch64 miscellaneous system control operations

Name Type Reset Width Description

TPIDR_ELO RW UNK 64 Thread Pointer/ID Register, ELO

TPIDR EL1 RW UNK 64 Thread Pointer/ID Register, EL1

TPIDRRO ELO0 RW UNK 64 Thread Pointer/ID Register, Read-Only, ELO
TPIDR EL2 RW UNK 64 Thread Pointer/ID Register, EL2
TPIDR_EL3 RW UNK 64 Thread Pointer/ID Register, EL3

4.217 AArch64 implementation defined registers

Table 4-17 on page 4-15 shows the IMPLEMENTATION DEFINED registers in AArch64 state.
These registers provide test features and any required configuration options specific to the
Cortex-AS53 processor. If a register is not indicated as mapped to an AArch32 64-bit register,
bits[63:32] are 0x00000000.
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Table 4-17 AArch64 implementation defined registers

Name Type Reset Width Description
ACTLR_EL1 RW 0x00000000 32 Auxiliary Control Register;, ELI on page 4-53
ACTLR_EL2 RW 0x00000000 32 Auxiliary Control Register;, EL2 on page 4-53
ACTLR_EL3 RW 0x00000000 32 Auxiliary Control Register; EL3 on page 4-55
AFSRO EL1 RW 0x00000000 32 Auxiliary Fault Status Register 0, EL1, EL2 and EL3 on page 4-90
AFSR1_EL1 RW 0x00000000 32 Auxiliary Fault Status Register 1, EL1, EL2 and EL3 on page 4-90
AFSRO _EL2 RW 0x00000000 32 Auxiliary Fault Status Register 0, EL1, EL2 and EL3 on page 4-90
AFSR1_EL2 RW 0x00000000 32 Auxiliary Fault Status Register 1, EL1, EL2 and EL3 on page 4-90
AFSRO_EL3 RW 0x00000000 32 Auxiliary Fault Status Register 0, EL1, EL2 and EL3 on page 4-90
AFSR1_EL3 RW 0x00000000 32 Auxiliary Fault Status Register 1, EL1, EL2 and EL3 on page 4-90
AMAIR EL1 RW 0x00000000 64 Auxiliary Memory Attribute Indirection Register, EL1, EL2 and
EL3 on page 4-90
AMAIR EL2 RW 0x00000000 64 Auxiliary Memory Attribute Indirection Register, EL1, EL2 and
EL3 on page 4-90
AMAIR EL3 RW 0x00000000 64 Auxiliary Memory Attribute Indirection Register, EL1, EL2 and
EL3 on page 4-90
L2CTLR _EL1 RW -a 32 L2 Control Register on page 4-100
L2ECTLR EL1 RW 0x00000000 32 L2 Extended Control Register on page 4-101
L2ACTLR ELI RwW 0x80000000> 32 L2 Auxiliary Control Register, ELI on page 4-102
CPUACTLR ELIl¢ RW 0x00000000090CA000 64 CPU Auxiliary Control Register, ELI on page 4-115
CPUECTLR ELI¢ RW 0x0000000000000000 64 CPU Extended Control Register, ELI on page 4-118
CPUMERRSR_ELl¢ RW - 64 CPU Memory Error Syndrome Register on page 4-120
L2MERRSR _ELI¢ RW - 64 L2 Memory Error Syndrome Register on page 4-123
CBAR EL1 RO -d 64 Configuration Base Address Register, ELI on page 4-124
a. The reset value depends on the processor implementation and the state of the LZRSTDISABLE signal.
b. This is the reset value for an ACE interface. For a CHI interface the reset value is 0x80004008.
c. Mapped to a 64-bit AArch32 register.
d. The reset value depends on the PERIPHBASE signal.
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4.3 AArch64 register descriptions
This section describes all the system registers, in register number order, when the system is in
the AArch64 Execution state. Table 4-1 on page 4-3 to Table 4-17 on page 4-15 provide
cross-references to individual registers.
4.3.1 Main ID Register, EL1
The MIDR EL1 characteristics are:
Purpose Provides identification information for the processor, including an
implementer code for the device and a device ID number.
Usage constraints This register is accessible as follows:
EL1 EL1 EL3 EL3
ELO EL2
(NS) (S) (SCR.NS=1) (SCR.NS =0)
- RO RO RO RO RO
Configurations The MIDR _EL1 is:
. Architecturally mapped to the AArch32 MIDR register. See Main
ID Register on page 4-149.
. Architecturally mapped to external MIDR_ELI1 register.
Attributes MIDR ELLI is a 32-bit register.
Figure 4-1 shows the MIDR_EL1 bit assignments.
31 24 23 2019 16 15 4 3 0
Implementer Variant  |Architecture PartNum Revision
Figure 4-1 MIDR_EL1 bit assignments
Table 4-18 shows the MIDR _EL1 bit assignments.
Table 4-18 MIDR_EL1 bit assignments
Bits Name Function
[31:24] Implementer Indicates the implementer code. This value is:
0x41 ASCII character 'A' - implementer is Arm.
[23:20]  Variant Indicates the variant number of the processor. This is the major revision number x in the rx part of the rxpy
description of the product revision status. This value is:
0x0 r0p4.
[19:16]  Architecture  Indicates the architecture code. This value is:
OxF Defined by CPUID scheme.
[15:4] PartNum Indicates the primary part number. This value is:
0xD03 Cortex-A53 processor.
[3:0] Revision Indicates the minor revision number of the processor. This is the minor revision number y in the py part of
the rxpy description of the product revision status. This value is:
0x4 r0p4.
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To access the MIDR _EL1:
MRS <Xt>, MIDR_EL1 ; Read MIDR_EL1 into Xt

Table 4-19 shows the register access encoding:

Table 4-19 MIDR_EL1 access encoding

op0 op1 CRn CRm op2

11 000 0000 0000 000

The MIDR_EL1 can be accessed through the memory-mapped interface and the external debug
interface, offset 0xD00.

4.3.2  Multiprocessor Affinity Register

The MPIDR_EL1 characteristics are:
Purpose Provides an additional core identification mechanism for scheduling

purposes in a cluster system.
Usage constraints This register is accessible as follows:

EL1 EL1 EL3 EL3
ELO EL2
(NS) (S) (SCR.NS=1) (SCR.NS=0)
- RO RO RO RO RO

Configurations The MPIDR_ELI1[31:0] is:

. Architecturally mapped to the AArch32 MPIDR register. See

Multiprocessor Affinity Register on page 4-150.

. Mapped to external EDDEVAFFO register.

MPIDR EL1[63:32] is mapped to external EDDEVAFF1 register.
Attributes MPIDR _EL1 is a 64-bit register.
Figure 4-2 shows the MPIDR EL1 bit assignments.

63 . 4039 32313029 252423 1615 87 . 0
RESO Aff3 u RESO Aff2 Aff1 Aff0
7T 7T I_RES1 7T I_MT 7T 7T W\
Figure 4-2 MPIDR_EL1 bit assignments
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